Skip to main content

Design Considerations for Implementing a Hyperpolarizer

  • Chapter
  • First Online:
Dynamic Hyperpolarized Nuclear Magnetic Resonance

Part of the book series: Handbook of Modern Biophysics ((HBBT))

  • 458 Accesses

Abstract

Central to all hyperpolarized magnetic resonance (MR) experiments is the preparation and delivery of hyperpolarized molecules and the hardware required to precondition the molecules via low-temperature dynamic nuclear polarization (DNP) for them to reach a state with highly polarized nuclear spins. This chapter aims to introduce concepts needed to understand how to determine the optimal conditions of field and temperature in order to obtain hyperpolarized molecules for in vitro and in vivo MR experiments. Various hyperpolarizers to date will be presented. Strategies to rapidly transfer the highly polarized molecules from a hyperpolarizer to the nuclear magnetic resonance (NMR) or magnetic resonance imaging (MRI) system used to acquire the MR data without substantially reducing the enhanced nuclear spin polarization will be reviewed. The required hardware for quality assurance prior to injection of hyperpolarized compounds into humans will also be presented along with the opportunities offered by the replacement of persistent radicals with nonpersistent photogenerated radicals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BDPA:

1,3-bisdiphenylene-2-phenylallyl

DNP:

Dynamic nuclear polarization

ESR:

Electron spin resonance

MR:

Magnetic resonance

NMR:

Nuclear magnetic resonance

UV–Vis:

Ultraviolet–visible

VTI:

Variable temperature insert

References

  1. Carver, T.R., Slichter, C.P.: Polarization of nuclear spins in metals. Phys. Rev. 92(1), 212–213 (1953)

    Article  Google Scholar 

  2. Overhauser, A.W.: Polarization of nuclei in metals. Phys. Rev. 92(2), 411–415 (1953)

    Article  MATH  Google Scholar 

  3. Carver, T.R., Slichter, C.P.: Experimental verification of the Overhauser nuclear polarization effect. Phys. Rev. 102(4), 975–980 (1956)

    Article  Google Scholar 

  4. Slichter, C.P.: The discovery and renaissance of dynamic nuclear polarization. Rep Prog Phys. 77, 7 (2014)

    Article  Google Scholar 

  5. Abraham, M., Mccausland, M.A.H., Robinson, F.N.H.: Dynamic nuclear polarization. Phys Rev Lett. 2(11), 449–451 (1959)

    Article  Google Scholar 

  6. Jeffries, C.D.: History of the development of polarized targets. In: High energy spin physics, pp. 3–19. Springer, Berlin, Heidelberg (1991)

    Chapter  Google Scholar 

  7. Wolber, J., Ellner, F., Fridlund, B., Gram, A., Johannesson, H., Hansson, G., Hansson, L.H., Lerche, M.H., Mansson, S., Servin, R., Thaning, M., Golman, K., Ardenkjaer-Larsen, J.H.: Generating highly polarized nuclear spins in solution using dynamic nuclear polarization. Nucl Instrum Meth A. 526(1–2), 173–181 (2004)

    Article  Google Scholar 

  8. Krjukov, E.V., O'Neill, J.D., Owers-Bradley, J.R.: Brute force polarization of Xe-129. J. Low Temp. Phys. 140(5–6), 397–408 (2005)

    Article  Google Scholar 

  9. Hirsch, M.L., Kalechofsky, N., Belzer, A., Rosay, M., Kempf, J.G.: Brute-force hyperpolarization for NMR and MRI. J. Am. Chem. Soc. 137(26), 8428–8434 (2015)

    Article  Google Scholar 

  10. Abragam, A., Goldman, M.: Principles of dynamic nuclear-polarization. Rep. Prog. Phys. 41(3), 395–467 (1978)

    Article  Google Scholar 

  11. Comment, A., van den Brandt, B., Uffmann, K., Kurdzesau, F., Jannin, S., Konter, J.A., Hautle, P., Wenckebach, W.T., Gruetter, R., van der Klink, J.J.: Design and performance of a DNP prepolarizer coupled to a rodent MRI scanner. Concept Magn Reson. 31B(4), 255–269 (2007)

    Article  Google Scholar 

  12. Redfield, A.G.: Nuclear magnetic resonance saturation and rotary saturation in solids. Phys. Rev. 98(6), 1787–1809 (1955)

    Article  Google Scholar 

  13. Borghini, M.: Spin-temperature model of nuclear dynamic polarization using free radicals. Phys. Rev. Lett. 20(9), 419–421 (1968)

    Article  Google Scholar 

  14. Ardenkjaer-Larsen, J.H., Leach, A.M., Clarke, N., Urbahn, J., Anderson, D., Skloss, T.W.: Dynamic nuclear polarization polarizer for sterile use intent. NMR Biomed. 24(8), 927–932 (2011)

    Article  Google Scholar 

  15. Yoshihara, H.A., Can, E., Karlsson, M., Lerche, M.H., Schwitter, J., Comment, A.: High-field dissolution dynamic nuclear polarization of [1-(13)C]pyruvic acid. Phys. Chem. Chem. Phys. 18(18), 12409–12413 (2016)

    Article  Google Scholar 

  16. Ardenkjaer-Larsen, J.H., Macholl, S., Johannesson, H.: Dynamic nuclear polarization with trityls at 1.2 K. Appl Magn Reson. 34(3–4), 509–522 (2008)

    Google Scholar 

  17. Comment, A., Merritt, M.E.: Hyperpolarized magnetic resonance as a sensitive detector of metabolic function. Biochemist. 53(47), 7333–7357 (2014)

    Article  Google Scholar 

  18. Wenckebach, W.T., Swanenburg, T.J.B., Poulis, N.J.: Thermodynamics of spin systems in paramagnetic crystals. Phys. Rep. 14(5), 181–255 (1974)

    Article  Google Scholar 

  19. Lumata, L., Kovacs, Z., Sherry, A.D., Malloy, C., Hill, S., van Tol, J., Yu, L., Song, L.K., Merritt, M.E.: Electron spin resonance studies of trityl OX063 at a concentration optimal for DNP. Phys. Chem. Chem. Phys. 15(24), 9800–9807 (2013)

    Article  Google Scholar 

  20. Comment, A., Rentsch, J., Kurdzesau, F., Jannin, S., Uffmann, K., van Heeswijk, R.B., Hautle, P., Konter, J.A., van den Brandt, B., van der Klink, J.J.: Producing over 100 ml of highly concentrated hyperpolarized solution by means of dissolution DNP. J. Magn. Reson. 194(1), 152–155 (2008)

    Article  Google Scholar 

  21. Cremillieux, Y., Goutailler, F., Montcel, B., Grand, D., Vermeulen, G., Wolf, P.E.: A super-wide bore DNP system for multiple sample polarization: cryogenic performance and polarization at low temperature. Appl. Magn. Reson. 43(1–2), 167–180 (2012)

    Article  Google Scholar 

  22. Lumata, L., Martin, R., Jindal, A., Kovacs, Z., Conradi, M., Merritt, M.: Development and performance of a 129-GHz dynamic nuclear polarizer in an ultra-wide bore superconducting magnet. MAGMA. 28, 195–205 (2014)

    Article  Google Scholar 

  23. Ardenkjaer-Larsen, J.H., Bowen, S., Petersen, J.R., Rybalko, O., Vinding, M.S., Ullisch, M., Nielsen, N.C.: Cryogen-free dissolution dynamic nuclear polarization polarizer operating at 3.35 T, 6.70 T, and 10.1 T. Magn Reson Med. 81(3), 2184–2194 (2019)

    Article  Google Scholar 

  24. Baudin, M., Vuichoud, B., Bornet, A., Bodenhausen, G., Jannin, S.: A cryogen-consumption-free system for dynamic nuclear polarization at 9.4 T. J. Magn. Reson. 294, 115–121 (2018)

    Article  Google Scholar 

  25. Cheng, T., Gaunt, A.P., Marco-Rius, I., Gehrung, M., Chen, A.P., van der Klink, J.J., Comment, A.: A multisample 7 T dynamic nuclear polarization polarizer for preclinical hyperpolarized MR. NMR Biomed. 33(5), e4264 (2020)

    Google Scholar 

  26. Kiswandhi, A., Niedbalski, P., Parish, C., Wang, Q., Lumata, L.: Assembly and performance of a 6.4T cryogen-free dynamic nuclear polarization system. Magn Reson Chem. 55(9), 846–852 (2017)

    Article  Google Scholar 

  27. Batel, M., Krajewski, M., Weiss, K., With, O., Dapp, A., Hunkeler, A., Gimersky, M., Pruessmann, K.P., Boesiger, P., Meier, B.H., Kozerke, S., Ernst, M.: A multi-sample 94 GHz dissolution dynamic-nuclear-polarization system. J. Magn. Reson. 214, 166–174 (2012)

    Article  Google Scholar 

  28. Nelson, S.J., Kurhanewicz, J., Vigneron, D.B., Larson, P.E., Harzstark, A.L., Ferrone, M., van Criekinge, M., Chang, J.W., Bok, R., Park, I., Reed, G., Carvajal, L., Small, E.J., Munster, P., Weinberg, V.K., Ardenkjaer-Larsen, J.H., Chen, A.P., Hurd, R.E., Odegardstuen, L.I., Robb, F.J., Tropp, J., Murray, J.A.: Metabolic imaging of patients with prostate cancer using hyperpolarized [1-13C]pyruvate. Sci Transl Med. 5(198), 198ra108 (2013)

    Article  Google Scholar 

  29. Uhlig, K.: Dry dilution refrigerator with he-4-1 K-loop. Cryogenics. 66, 6–12 (2015)

    Article  Google Scholar 

  30. Bornet, A., Melzi, R., Linde, A.J.P., Hautle, P., van den Brandt, B., Jannin, S., Bodenhausen, G.: Boosting dissolution dynamic nuclear polarization by cross polarization. J. Phys. Chem. Lett. 4(1), 111–114 (2013)

    Article  Google Scholar 

  31. Cheng, T., Capozzi, A., Takado, Y., Balzan, R., Comment, A.: Over 35% liquid-state 13C polarization obtained via dissolution dynamic nuclear polarization at 7 T and 1 K using ubiquitous nitroxyl radicals. Phys. Chem. Chem. Phys. 15(48), 20819–20822 (2013)

    Article  Google Scholar 

  32. Macor, A., de Rijk, E., Alberti, S., Comment, A., Ansermet, J.P.: Universal polarizer at 140 for DNP-enhanced NMR experiments. Int Conf Infra Milli. (2011)

    Google Scholar 

  33. Kisselev, Y.F.: The modulation effect on the dynamic polarization of nuclear spins. Nucl Instrum Meth A. 356(1), 99–101 (1995)

    Article  Google Scholar 

  34. Capozzi, A., Karlsson, M., Petersen, J.R., Lerche, M.H., Ardenkjaer-Larsen, J.H.: Liquid-state 13C polarization of 30% through Photoinduced nonpersistent radicals. J. Phys. Chem. C. 122(13), 7432–7443 (2018)

    Article  Google Scholar 

  35. Hirsch, M.L., Smith, B.A., Mattingly, M., Goloshevsky, A.G., Rosay, M., Kempf, J.G.: Transport and imaging of brute-force (13)C hyperpolarization. J. Magn. Reson. 261, 87–94 (2015)

    Article  Google Scholar 

  36. Capozzi, A., Cheng, T., Boero, G., Roussel, C., Comment, A.: Thermal annihilation of photo-induced radicals following dynamic nuclear polarization to produce transportable frozen hyperpolarized 13C-substrates. Nat. Commun. 8, 15757 (2017)

    Article  Google Scholar 

  37. Joo, C.G., Hu, K.N., Bryant, J.A., Griffin, R.G.: In situ temperature jump high-frequency dynamic nuclear polarization experiments: enhanced sensitivity in liquid-state NMR spectroscopy. J. Am. Chem. Soc. 128(29), 9428–9432 (2006)

    Article  Google Scholar 

  38. Sharma, M., Janssen, G., Leggett, J., Kentgens, A.P.M., van Bentum, P.J.M.: Rapid-melt dynamic nuclear polarization. J. Magn. Reson. 258, 40–48 (2015)

    Article  Google Scholar 

  39. Shang, H., Skloss, T., von Morze, C., Carvajal, L., Van Criekinge, M., Milshteyn, E., Larson, P.E.Z., Hurd, R.E., Vigneron, D.B.: Handheld electromagnet carrier for transfer of hyperpolarized Carbon-13 samples. Magn. Reson. Med. 75(2), 917–922 (2016)

    Article  Google Scholar 

  40. Frydman, L., Blazina, D.: Ultrafast two-dimensional nuclear magnetic resonance spectroscopy of hyperpolarized solutions. Nat. Phys. 3(6), 415–419 (2007)

    Article  Google Scholar 

  41. Bowen, S., Hilty, C.: Rapid sample injection for hyperpolarized NMR spectroscopy. Phys. Chem. Chem. Phys. 12(22), 5766–5770 (2010)

    Article  Google Scholar 

  42. Leggett, J., Hunter, R., Granwehr, J., Panek, R., Perez-Linde, A.J., Horsewill, A.J., McMaster, J., Smith, G., Kockenberger, W.: A dedicated spectrometer for dissolution DNP NMR spectroscopy. Phys. Chem. Chem. Phys. 12(22), 5883–5892 (2010)

    Article  Google Scholar 

  43. Cheng, T., Mishkovsky, M., Bastiaansen, J.A.M., Ouari, O., Hautle, P., Tordo, P., van den Brandt, B., Comment, A.: Automated transfer and injection of hyperpolarized molecules with polarization measurement prior to in vivo NMR. NMR Biomed. 26(11), 1582–1588 (2013)

    Article  Google Scholar 

  44. Mishkovsky, M., Anderson, B., Karlsson, M., Lerche, M.H., Sherry, A.D., Gruetter, R., Kovacs, Z., Comment, A.: Measuring glucose cerebral metabolism in the healthy mouse using hyperpolarized 13C magnetic resonance. Sci. Rep. 7, 11719 (2017)

    Article  Google Scholar 

  45. Comment, A., van den Brandt, B., Uffmann, K., Kurdzesau, F., Jannin, S., Konter, J.A., Hautle, P., Wenckebach, W.T., Gruetter, R., van der Klink, J.J.: Principles of operation of a DNP prepolarizer coupled to a rodent MRI scanner. Appl. Magn. Reson. 34(3–4), 313–319 (2008)

    Article  Google Scholar 

  46. Eichhorn, T.R., Takado, Y., Salameh, N., Capozzi, A., Cheng, T., Hyacinthe, J.N., Mishkovsky, M., Roussel, C., Comment, A.: Hyperpolarization without persistent radicals for in vivo real-time metabolic imaging. Proc. Natl. Acad. Sci. U. S. A. 110(45), 18064–18069 (2013)

    Article  Google Scholar 

  47. Lumata, L., Ratnakar, S.J., Jindal, A., Merritt, M., Comment, A., Malloy, C., Sherry, A.D., Kovacs, Z.: BDPA: an efficient polarizing agent for fast dissolution dynamic nuclear polarization NMR spectroscopy. Chem. 17(39), 10825–10827 (2011)

    Article  Google Scholar 

  48. Bastiaansen, J.A.M., Yoshihara, H.A.I., Capozzi, A., Schwitter, J., Gruetter, R., Merritt, M.E., Comment, A.: Probing cardiac metabolism by hyperpolarized 13C MR using an exclusively endogenous substrate mixture and photo-induced nonpersistent radicals. Magn. Reson. Med. 79(5), 2451–2459 (2018)

    Article  Google Scholar 

  49. Capozzi, A., Hyacinthe, J.N., Cheng, T., Eichhorn, T.R., Boero, G., Roussel, C., van der Klink, J.J., Comment, A.: Photoinduced nonpersistent radicals as polarizing agents for X-nuclei dissolution dynamic nuclear polarization. J. Phys. Chem. C. 119(39), 22632–22639 (2015)

    Article  Google Scholar 

  50. Capozzi, A., Patel, S., Gunnarsson, C.P., Marco-Rius, I., Comment, A., Karlsson, M., Lerche, M.H., Ouari, O., Ardenkjaer-Larsen, J.H.: Efficient hyperpolarization of U-(13) C-glucose using narrow-line UV-generated labile free radicals. Angew. Chem. Int. Ed. Engl. 58(5), 1334–1339 (2019)

    Article  Google Scholar 

  51. Marco-Rius, I., Cheng, T., Gaunt, A.P., Patel, S., Kreis, F., Capozzi, A., Wright, A.J., Brindle, K.M., Ouari, O., Comment, A.: Photogenerated radical in Phenylglyoxylic acid for in vivo hyperpolarized (13)C MR with photosensitive metabolic substrates. J. Am. Chem. Soc. 140(43), 14455–14463 (2018)

    Article  Google Scholar 

  52. Comment, A.: The benefits of not using exogenous substances to prepare substrates for hyperpolarized MRI. Imag Med. 6(1), 1–3 (2014)

    Article  Google Scholar 

  53. Duarte, J.M., Lanz, B., Gruetter, R.: Compartmentalized cerebral metabolism of [1,6-C]glucose determined by in vivo C NMR spectroscopy at 14.1 T. Front Neuroenerget. 3, 3 (2011)

    Article  Google Scholar 

  54. Chen, A.P., Albers, M.J., Cunningham, C.H., Kohler, S.J., Yen, Y.-F., Hurd, R.E., Tropp, J., Bok, R., Pauly, J.M., Nelson, S.J., Kurhanewicz, J., Vigneron, D.B.: Hyperpolarized C-13 spectroscopic imaging of the TRAMP mouse at 3T—initial experience. Magn. Reson. Med. 58(6), 1099–1106 (2007)

    Article  Google Scholar 

Further Reading

  • Ardenkjaer-Larsen, J.H., Leach, A.M., Clarke, N., Urbahn, J., Anderson, D., Skloss, T.W.: Dynamic nuclear polarization polarizer for sterile use intent. NMR Biomed. 24(8), 927–932 (2011)

    Article  Google Scholar 

  • Ardenkjaer-Larsen, J.H., Bowen, S., Petersen, J.R., Rybalko, O., Vinding, M., Ullisch, M., Nielsen, N.C.: Cryogen-free dissolution dynamic nuclear polarization polarizer operating at 3.35 T, 6.70 T and 10.1 T. Magn Reson Med. 81(3), 2184–2194 (2019)

    Google Scholar 

  • Baudin, M., Vuichoud, B., Bornet, A., Bodenhausen, G., Jannin, S.: A cryogen-consumption-free system for dynamic nuclear polarization at 9.4 T. J Magn Reson. 294, 115–121 (2018)

    Google Scholar 

  • Cheng, T., Gaunt, A.P., Marco-Rius, I., Gehrung, M., Chen, A.P., van der Klink, J.J., Comment, A.: A multisample 7 T dynamic nuclear polarization polarizer for preclinical hyperpolarized MR. NMR Biomed. 33(5), e4264 (2020)

    Google Scholar 

  • Comment, A., van den Brandt, B., Uffmann, K., Kurdzesau, F., Jannin, S., Konter, J.A., Hautle, P., Wenckebach, W.T., Gruetter, R., van der Klink, J.J.: Design and performance of a DNP prepolarizer coupled to a rodent MRI scanner. Concepts Magn Reson. 31B(4), 255–269 (2007)

    Article  Google Scholar 

  • Wolber, J., Ellner, F., Fridlund, B., Gram, A., Johannesson, H., Hansson, G., Hansson, L.H., Lerche, M.H., Mansson, S., Servin, R., Thaning, M., Golman, K., Ardenkjaer-Larsen, J.H.: Generating highly polarized nuclear spins in solution using dynamic nuclear polarization. Nucl Instrum Meth A. 526(1–2), 173–181 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

This work is part of a project that has received funding from the European Union’s Horizon 2020 European Research Council (ERC Consolidator Grant) under grant agreement no. 682574 (ASSIMILES). The author would like to thank Dr. Adam Gaunt for his suggestions and for proof reading this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnaud Comment .

Editor information

Editors and Affiliations

Problems

Problems

  1. 1.

    A 13C MR signal enhancement ε of 55,000 was recorded in a phantom containing a solution of hyperpolarized [1-13C]pyruvate placed inside a 3 T MR scanner. The solution was prepared from neat [1-13C]pyruvic acid doped with trityl radicals and placed inside the bore of the scanner 20 s before the hyperpolarized 13C MR measurement. Polarization, dissolution, and neutralization took place in a 7 T hyperpolarizer located in an adjacent room and it took 40 s to transport the solution through the stray field of the scanner. Knowing that the room-temperature T1, 13C of [1-13C]pyruvate in solution is 65 s at 3 T and 50 s in the stray field of the scanner, determine at what temperature the pyruvic acid sample was polarized (hint: use the linear fit from Fig. 2.2).

  2. 2.

    During a conference, a scientist presented a model showing that the optimal T1, e leading to the highest 13C polarization with trityl radical is 300 ms whatever the magnetic field as long as the temperature is in the range 1–1.5 K. You decide to find out experimentally if this is true using your polarizer operating at 1.5 K by measuring the 13C polarization of [1-13C]pyruvic acid as a function of magnetic field knowing that you can set the field anywhere between 0 and 5 T (you also have access to a large set of microwave sources with adjustable frequency that can match the ESR frequency of trityl radical over this whole range of magnetic field). Considering that the T1, e of trityl in [1-13C] pyruvic acid has been measured to be approximately 1 s at 3.35 T and 1.2 K (see Sect. 2.2), do you think that you can test this theoretical model with your polarizer? Estimate the largest 13C polarization you could expect measuring in your polarizer if this model was correct.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Comment, A. (2021). Design Considerations for Implementing a Hyperpolarizer. In: Jue, T., Mayer, D. (eds) Dynamic Hyperpolarized Nuclear Magnetic Resonance. Handbook of Modern Biophysics. Springer, Cham. https://doi.org/10.1007/978-3-030-55043-1_2

Download citation

Publish with us

Policies and ethics