Skip to main content
Log in

Acceleration Ability of Aluminum-Containing Explosive Compositions

  • Combustion, Explosion, and Shock Waves
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

Results of a study of explosives with varying oxygen balance by a method based on the acceleration of a steel plate from the charge end face (M-40) have confirmed the possibility of increasing the acceleration ability of these substances owing to the addition of powdered aluminum. The experimental and calculated data suggest that, in the case of mixtures prepared by the conventional method of mechanical mixing, compositions with aluminum nanoparticles and compositions containing aluminum with a particle size on the order of a few microns have similar acceleration ability values. Nanocomposites—systems with a uniform distribution of aluminum nanoparticles in the explosive matrix—can be superior to the mechanical mixtures in acceleration ability in the case of a highly negative oxygen balance of the explosive base. Calculations have shown that the acceleration ability of mixtures of low-sensitivity explosives with aluminum can be further increased owing to the formation of nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. G. Andreev, A. V. Babkin, F. A. Baum, et al., Physics of Explosion, Ed. by L. P. Orlenko (Fizmatlit, Moscow, 2002), Vol. 1 [in Russian].

  2. V. Yu. Davydov and A. S. Gubin, Russ. J. Phys. Chem. B 5, 491 (2011).

    Article  CAS  Google Scholar 

  3. M. N. Makhov, in Combustion and Explosion, Ed. by S. M. Frolov (Torus Press, Moscow, 2008), No. 1, p. 93 [in Russian].

    Google Scholar 

  4. M. N. Makhov, Gorenie Vzryv 8, 256 (2015).

    Google Scholar 

  5. M. F. Gogulya, M. N. Makhov, A. Yu. Dolgoborodov, et al., Fiz. Goreniya Vzryva 40 (4), 82 (2004).

    CAS  Google Scholar 

  6. M. N. Makhov, M. F. Gogulya, A. Yu. Dolgoborodov, et al., Fiz. Goreniya Vzryva 40 (4), 96 (2004).

    CAS  Google Scholar 

  7. M. F. Gogulya, M. A. Brazhnikov, M. N. Makhov, A. Yu. Dolgoborodov, A. V. Lyubimov, and I. L. Sokolova, Russ. J. Phys. Chem. B 6, 730 (2012).

    Article  CAS  Google Scholar 

  8. M. F. Gogulya, M. N. Makhov, M. A. Brazhnikov, A. Yu. Dolgoborodov, V. I. Arkhipov, A. N. Zhigach, I. O. Leipunskii, and M. L. Kuskov, Combust. Explos., Shock Waves 44, 198 (2008).

    Article  Google Scholar 

  9. A. N. Zhigach, I. O. Leipunskii, M. L. Kuskov, N. I. Stoenko, and V. B. Storozhev, Instrum. Exp. Tech. 43, 839 (2000).

    Article  Google Scholar 

  10. A. N. Zhigach, I. O. Leipunskii, M. L. Kuskov, et al., Khim. Fiz. 21 (4), 72 (2002).

    CAS  Google Scholar 

  11. M. N. Makhov and V. I. Arkhipov, Russ. J. Phys. Chem. B 2, 602 (2008).

    Google Scholar 

  12. N. A. Silin, V. A. Vashchenko, L. Ya. Kashporov, et al., Metallic Fuels of Heterogeneous Condensed Systems (Mashinostroenie, Moscow, 1976) [in Russian].

    Google Scholar 

  13. J. J. Davis and P. J. Miller, AIP Conf. Proc. 620, 950 (2002).

    Article  CAS  Google Scholar 

  14. M. N. Makhov, Khim. Fiz. 19 (9), 83 (2000).

    CAS  Google Scholar 

  15. R. L. Sympson, P. A. Urtiew, D. L. Ornellas, et al., Propellants, Explosives, Pyrotech. 22, 249 (1997).

    Article  Google Scholar 

  16. M. N. Makhov, Russ. J. Phys. Chem. B 8, 186 (2014).

    Article  CAS  Google Scholar 

  17. G. T. Afanas’ev, V. P. Lebedev, Yu. N. Matyushin, et al., Khim. Fiz. 22 (12), 38 (2003).

    Google Scholar 

  18. J. Ritums, C. Oscarson, M. Liljedahl, et al., in Proceedings of the 45th International Annual Conference of ICT (Fraunhofer Inst. Chem. Technol., Pfinztal, 2014), p. 2.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Makhov.

Additional information

Original Russian Text © M.N. Makhov, 2018, published in Khimicheskaya Fizika, 2018, Vol. 37, No. 4, pp. 51–58.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makhov, M.N. Acceleration Ability of Aluminum-Containing Explosive Compositions. Russ. J. Phys. Chem. B 12, 258–265 (2018). https://doi.org/10.1134/S1990793118020203

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793118020203

Keywords

Navigation