Skip to main content
Log in

Heat of Explosion and Acceleration Ability of Explosive Compositions Containing Polytetrafluoroethylene

  • COMBUSTION, EXPLOSION, AND SHOCK WAVES
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

It is known that, under strong shock wave loading or at high temperatures, polytetrafluoroethylene (PTFE) decomposes and forms chemically active products that are capable of interaction with metals. In this work, data on the heat of explosion of mixtures containing HMX, PTFE, and Al are given. From the results, it follows that aluminized explosive compositions are characterized by high values of the heat of explosion. The high temperatures that develop at the formation of aluminum oxide promote PTFE decomposition. However, the heat of an explosion decreases as PTFE concentration increases. This is because PTFE has a strongly negative heat of formation. The evaluation of the acceleration ability shows that PTFE can be used in explosive formulations, intended for the accelerating action, on condition that the composition contains a high explosive with a positive oxygen balance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Figure 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Ya. M. Paushkin, in Liquid and Solid Chemical Rocket Fuels, Ed. by A. I. Fokin (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  2. S. Cudzilo and W. A. Trzcinski, Khim. Fiz. 22 (1), 82 (2003).

    CAS  Google Scholar 

  3. V. V. Selivanov and A. V. Styrov, Khim. Fiz. 18 (11), 72 (1999).

    CAS  Google Scholar 

  4. M. N. Makhov and V. I. Pepekin, in Chemical Physics of Combustion and Explosion. Detonation (OIKhF AN SSSR, Chernogolovka, 1989), p. 23 [in Russian].

  5. M. N. Makhov, Khim. Fiz. 19 (6), 52 (2000).

    CAS  Google Scholar 

  6. A. Yu. Dolgoborodov, A. N. Streletskii, M. N. Makhov, I. V. Kolbanev, and V. E. Fortov, Russ. J. Phys. Chem. B 1, 606 (2007).

    Article  Google Scholar 

  7. N. A. Imkhovik, A. V. Svidinskii, A. S. Smirnov, and V. B. Yashin, Gorenie Vzryv 10 (1), 93 (2017).

    Google Scholar 

  8. M. N. Makhov, Khim. Fiz. 19 (9), 83 (2000).

    CAS  Google Scholar 

  9. M. N. Makhov, M. F. Gogulya, A. Yu. Dolgoborodov, et al., Fiz. Goreniya Vzryva 40 (4), 96 (2004).

    CAS  Google Scholar 

  10. M. N. Makhov, in Combustion and Explosion, Ed. by S. M. Frolov (Torus Press, Moscow, 2011), No. 4, p. 307 [in Russian].

  11. M. N. Makhov, in Proceedings of the 33rd International Annual Conference of ICT (Fraunhofer Inst. Chem. Technol., Pfinztal, 2002), p. 73.

  12. M. N. Makhov, in Proceedings of the 36th International Annual Conference of ICT and 32nd International Pyrotechnics Seminar (Fraunhofer Inst. Chem. Technol., Pfinztal, 2005), p. 122.

  13. A. A. Reshetov, in Proceedings of the 11th Symposium on Combustion and Explosion (IPKhF RAN, Chernogolovka, 1996), Part 2, p. 74.

  14. D. L. Ornellas, Propellants, Explosives, Pyrotech. 14 (3), 122 (1989).

    Article  CAS  Google Scholar 

  15. S. A. Gubin, V. V. Odintsov, V. I. Pepekin, and V.  A. Shargatov, Khim. Fiz. 9, 673 (1990).

    CAS  Google Scholar 

  16. S. G. Andreev, A. V. Babkin, F. A. Baum, et al., Physics of the Explosion, Ed. by L. P. Orlenko (Fizmatlit, Moscow, 2002), Vol. 1 [in Russian].

    Google Scholar 

  17. M. N. Makhov and V. I. Arkhipov, Russ. J. Phys. Chem. B 2, 602 (2008).

    Google Scholar 

  18. R. L. Sympson, P. A. Urtiew, D. L. Ornellas, et al., Propellants, Explosives, Pyrotech. 22, 249 (1997).

    Article  Google Scholar 

  19. A. N. Zhigach, I. O. Leipunskii, M. L. Kuskov, et al., Khim. Fiz. 21 (4), 72 (2002).

    CAS  Google Scholar 

  20. Y.-S. Kwon, A. A. Gromov, and A. P. Ilyin, Combust. Flame 131, 349 (2002).

    Article  CAS  Google Scholar 

  21. M. N. Makhov, Russ. J. Phys. Chem. B 8, 186 (2014).

    Article  CAS  Google Scholar 

  22. D. E. G. Jones, R. Tarcotte, R. C. Fouchard, et al., Propellants, Explosives, Pyrotech. 28, 120 (2003).

    Article  CAS  Google Scholar 

Download references

Funding

This work was carried out due to the grant allocated by the Institute of Chemical Physics of the Russian Academy of Sciences for the State task performance “Creation of high-energy materials of a new generation and research of their characteristics” (topic AAAA-A18-118031490034-6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Makhov.

Additional information

Translated by V. Selikhanovich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makhov, M.N. Heat of Explosion and Acceleration Ability of Explosive Compositions Containing Polytetrafluoroethylene. Russ. J. Phys. Chem. B 14, 45–51 (2020). https://doi.org/10.1134/S1990793120010091

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793120010091

Keywords:

Navigation