Skip to main content
Log in

Interaction of Gaseous Reagents on Gold and Nickel Nanoparticles

  • Chemical Physics of Nanomaterials
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The adsorption and interaction of hydrogen, carbon monoxide, and oxygen with gold and nickel nanoparticles is studied by scanning tunneling microscopy and spectroscopy. It is established that the HCO radical is formed on gold nanoparticles by the reaction between adsorbed H2 and CO, which is subsequently oxidized by oxygen to water and CO2. At the same time, after exposure to H2 and CO, nickel nanoparticles coated with oxide are reduced. The formation of adsorbed HCO on such nanoparticles is not observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Bukhtiyarov and M. G. Slin’ko, Russ. Chem. Rev. 70, 147 (2001).

    Article  CAS  Google Scholar 

  2. B. Roldan Cuenya, Thin Solid Films 518, 3127 (2010).

    Article  CAS  Google Scholar 

  3. X. Wang, J. Feng, Y. Bai, Q. Zhang, and Y. Yin, Chem. Rev. 116, 10983 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. M. Haruta, T. Kobayashi, H. Sano, and N. Yamada, Chem. Lett., 405 (1987).

  5. O. G. Ellert, M. V. Tsodikov, S. A. Nikolaev, and V.M. Novotortsev, Russ. Chem. Rev. 83, 718 (2014).

    Article  CAS  Google Scholar 

  6. S. A. Nikolaev, V. V. Smirnov, A. Yu. Vasil’kov, and V. L. Podshibikhin, Kinet. Catal. 51, 375 (2010).

    Article  CAS  Google Scholar 

  7. S. A. Nikolaev, N. A. Permyakov, V. V. Smirnov, A. Yu. Vasil’kov, and S. N. Lanin, Kinet. Catal. 51, 288 (2010).

    Article  CAS  Google Scholar 

  8. P. Lakshmanan, P. P. Upare, N.-T. Le, Y. K. Hwang, D. W. Hwang, U-H. Lee, H. R. Kim, and J.-S. Chang, Appl. Catal., A 468, 260 (2013).

    Article  CAS  Google Scholar 

  9. S. A. Nikolaev, A. V. Chistyakov, M. V. Chudakova, V. V. Kriventsov, E. P. Yakimchuk, and M. V. Tsodikov, J. Catal. 297, 296 (2013).

    Article  CAS  Google Scholar 

  10. I. L. Simakova, Yu. S. Solkina, B. L. Moroz, O. A. Simakova, S. I. Reshetnikov, I. P. Prosvirin, V. I. Bukhtiyarov, V. N. Parmon, and D. Yu. Murzin, Appl. Catal., A 385, 136 (2010).

    Article  CAS  Google Scholar 

  11. V. V. Smirnov, S. A. Nikolaev, G. P. Murav’eva, L. A. Tyurina, and A. Yu. Vasil’kov, Kinet. Catal. 48, 265 (2007).

    Article  CAS  Google Scholar 

  12. L. A. Dykman and N. G. Khlebtsov, Acta Natur. 3 (2), 36 (2011).

    Google Scholar 

  13. Y. Zhang, W. Chu, A. D. Foroushani, H. Wang, D. Li, J. Liu, C. J. Barrow, X. Wang, and W. Yang, Materials 7, 5169 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. J.-S. Lee, Gold Bull. 43, 189 (2010).

    Article  Google Scholar 

  15. S. N. Lanin, D. A. Pichugina, A. F. Shestakov, V. V. Smirnov, S. A. Nikolaev, K. S. Lanina, A. Yu. Vasil’kov, Fam Tien Zung, and A. V. Beletskaya, Russ. J. Phys. Chem. A 84, 2133 (2010).

    Article  CAS  Google Scholar 

  16. V. V. Smirnov, S. N. Lanin, A. Yu. Vasil’kov, S. A. Nikolaev, G. P. Murav’eva, L. A. Tyurina, and E. V. Vlasenko, Russ. Chem. Bull. 54, 2286 (2005).

    Article  CAS  Google Scholar 

  17. S. A. Nikolaev, A. Yu. Vasil’kov, V. V. Smirnov, and L. A. Tyurina, Kinet. Catal. 46, 867 (2005).

    Article  CAS  Google Scholar 

  18. L. A. Tjurina, V. V. Smirnov, D. A. Potapov, S. A. Nikolaev, S. E. Esipov, and I. P. Beletskaya, Organometallics 23, 1349 (2004).

    Article  CAS  Google Scholar 

  19. M. V. Grishin, A. K. Gatin, N. V. Dokhlikova, N. N. Kolchenko, S. Yu. Sarvadii, and B. R. Shub, Nanotechnol. Russ. 11, 727 (2016).

    Article  CAS  Google Scholar 

  20. M. V. Grishin, A. K. Gatin, N. V. Dokhlikova, A. A. Kirsankin, A. I. Kulak, S. A. Nikolaev, and B. R. Shub, Kinet. Catal. 56, 532 (2015).

    Article  CAS  Google Scholar 

  21. S. A. Nikolaev, E. V. Golubina, L. M. Kustov, A. L. Tarasov, and O. P. Tkachenko, Kinet. Catal. 55, 311 (2014).

    Article  CAS  Google Scholar 

  22. Z. Gai, J. Y. Howe, J. Guo, D. A. Blom, E. W. Plummer, and J. Shen, Appl. Phys. Lett. 86, 023107 (2005).

    Article  CAS  Google Scholar 

  23. H. I. Abbott, A. Aumer, Y. Lei, C. Asokan, R. J. Meyer, M. Sterrer, S. Shaikhutdinov, and H.-J. Freund, J. Phys. Chem. C 114, 17099 (2010).

    Article  CAS  Google Scholar 

  24. E. Napetschnig, M. Schmid, and P. Varga, Surf. Sci. 601, 3233 (2007).

    Article  CAS  Google Scholar 

  25. A. K. Santra, F. Yang, and D. W. Goodman, Surf. Sci. 548, 324 (2004).

    Article  CAS  Google Scholar 

  26. J. B. Park, J. S. Ratliff, S. Ma, and D. A. Chen, Surf. Sci. 600, 2913 (2006).

    Article  CAS  Google Scholar 

  27. R. J. Davies, M. Bowker, P. R. Davies, and D. J. Morgan, Nanoscale 5, 9018 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. A. K. Gatin, M. V. Grishin, S. A. Gurevich, N. V. Dokhlikova, A. A. Kirsankin, V. M. Kozhevin, E. S. Lokteva, T. N. Rostovshchikova, S. Yu. Sarvadii, B. R. Shub, and D. A. Yavsin, Nanotechnol. Russ. 10, 850 (2015).

    Article  CAS  Google Scholar 

  29. A. K. Gatin, M. V. Grishin, S. A. Gurevich, N. V. Dokhlikova, A. A. Kirsankin, V. M. Kozhevin, N. N. Kolchenko, T. N. Rostovshchikova, V. A. Kharitonov, B. R. Shub, and D. A. Yavsin, Russ. Chem. Bull. 63, 1696 (2014).

    Article  CAS  Google Scholar 

  30. J. H. Sinflet, Bimetallic Catatysts. Discovers, Concepts and Applications (Wiley, New York, 1983).

    Google Scholar 

  31. W. M. H. Sachtler, Le Vide 163, 19 (1979).

    Google Scholar 

  32. S. N. Augustine and W. M. H. Sachler, J. Phys. Chem. 91, 5953 (1987).

    Article  CAS  Google Scholar 

  33. Y. Y. Huang and W. M. H. Sachtler, J. Catal. 188, 215 (1999).

    Article  CAS  Google Scholar 

  34. M. Bonarovska, A. Malinowski, and Z. Karpinski, Appl. Catal., A 188, 145 (1999).

    Article  Google Scholar 

  35. G. Diaz, A. Gomezcortes, and M. Benaisa, Catal. Lett. 38, 63 (1996).

    Article  CAS  Google Scholar 

  36. M. A. Willard, L. K. Kurihara, E. E. Carpenter, S. Calvin, and V. G. Harris, Intern. Mater. Rev. 49, 125 (2004).

    Article  CAS  Google Scholar 

  37. S. Sun, C. B. Murray, D. Weller, L. Folks, and A. Moser, Science 287, 1989 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. C. Li, C. Ma, F. Wang, Z. Xil, Z. Wang, Y. Deng, and N. He, J. Nanosci. Nanotechnol. 12, 2964 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. X. Mou, Z. Ali, S. Li, and N. He, J. Nanosci. Nanotechnol. 15, 54 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. K. M. Krishnan, A. B. Pakhomov, Y. Bao, P. Blomqvist, Y. Chun, M. Gonzales, K. Griffin, X. Ji, and B. K. Roberts, J. Mater. Sci. 41, 793 (2006).

    Article  CAS  Google Scholar 

  41. C. W. Lim and I. S. Lee, Nano Today 5, 412 (2010).

    Article  CAS  Google Scholar 

  42. T. Ishizaki, K. Yatsugi, and K. Akedo, Nanomaterials 6, 172 (2016).

    Article  CAS  PubMed Central  Google Scholar 

  43. A. K. Gatin, M. V. Grishin, S. A. Gurevich, N. V. Dokhlikova, A. A. Kirsankin, V. M. Kozhevin, E. S. Lokteva, T. N. Rostovshchikova, S. Yu. Sarvadii, B. R. Shub, and D. A. Yavsin, Russ. Chem. Bull. 64, 2337 (2015).

    Article  CAS  Google Scholar 

  44. E. S. Lokteva, A. A. Peristyy, N. E. Kavalerskaya, E. V. Golubina, L. V. Yashina, T. N. Rostovshchikova, S. A. Gurevich, V. M. Kozhevin, D. A. Yavsin, and V. V. Lunin, Pure Appl. Chem. 84, 495 (2012).

    Article  CAS  Google Scholar 

  45. N. E. Kavalerskaya, E. S. Lokteva, T. N. Rostovshchikova, E. V. Golubina, and K. I. Maslakov, Kinet. Catal. 54, 597 (2013).

    Article  CAS  Google Scholar 

  46. Scanning Tunneling Microscopy I. General Principles and Applications to Clean and Absorbate-Covered Surfaces, Ed. by H.-J. Guntherodt and R. Wiesendanger (Springer, Berlin, 1994).

  47. G. Binnig, H. Rohrer, C. Berber, and E. Weibel, Appl. Phys. Lett. 40, 178 (1981).

    Article  Google Scholar 

  48. E. Meyer, H. J. Hug, and R. Bennewitz, Scanning Probe Microscopy (Springer, Berlin, 2004).

    Book  Google Scholar 

  49. R. J. Hamers and Y. J. Wang, Chem. Rev. 96, 1261 (1996).

    Article  CAS  Google Scholar 

  50. R. J. Hamers, R. M. Tromp, and J. E. Demuth, Phys. Rev. Lett. 56, 1972 (1986).

    Article  CAS  Google Scholar 

  51. A. K. Gatin, M. V. Grishin, F. I. Dalidchik, S. A. Kovalevskii, and N. N. Kolchenko, Khim. Fiz. 25 (6), 17 (2006).

    CAS  Google Scholar 

  52. R. Meyer, C. Lemire, Sh. K. Shaikhutdinov, and H.-J. Freund, Gold Bull. 37, 72 (2004).

    Article  CAS  Google Scholar 

  53. B. M. W. Trapnell, Proc. R. Soc. London, Ser. A 218, 566 (1952).

    Article  Google Scholar 

  54. D. C. Meier, V. Bukhtiyarov, and D. W. Goodman, J. Phys. Chem. B 107, 12668 (2003).

    Article  CAS  Google Scholar 

  55. N. Saliba, D. H. Parker, and B. E. Koel, Surf. Sci. 410, 270 (1998).

    Article  CAS  Google Scholar 

  56. D. A. Outka and R. J. Madix, Surf. Sci. 179, 361 (1987).

    Article  CAS  Google Scholar 

  57. J. M. Gottfried, K. J. Schmidt, S. L. M. Schroeder, and K. Christmann, Surf. Sci. 525, 197 (2003).

    Article  CAS  Google Scholar 

  58. T. Bär, T. Visart de Bocarmé, B. E. Nieuwenhuys, and N. Kruse, Catal. Lett. 74, 127 (2001).

    Article  Google Scholar 

  59. M. M. Wohar and P. W. Jagodzinski, J. Mol. Spectrosc. 148, 13 (1991).

    Article  CAS  Google Scholar 

  60. M. Rothaemel, H. W. Zanthoff, and M. Baerns, Catal. Lett. 28, 321 (1994).

    Article  CAS  Google Scholar 

  61. M. Fastow, Y. Kosirovski, and M. Folman, J. Electron Spectrosc. Rel. Phenom. 64–65, 643 (1993).

    Google Scholar 

  62. J. L. C. Fajin, M. N. D. S. Cordeiro, and J. R. B. Gomes, J. Phys. Chem. C 112, 17291 (2008).

    Article  CAS  Google Scholar 

  63. H. Yang, Q. Tao, X. Zhang, A. Tang, and J. Ouyang, J. Alloys Compd. 459, 98 (2008).

    Article  CAS  Google Scholar 

  64. F. Davar, Z. Fereshteh, and M. Salavati-Niasari, J. Alloys Compd. 476, 797 (2009).

    Article  CAS  Google Scholar 

  65. S. Dmitriev, Intern. J. Smart Sens. Intel. Syst. 3, 807 (2010).

    CAS  Google Scholar 

  66. A. Ueno, J. K. Hochiwth, and C. O. Bennett, J. Catal. 49, 225 (1977).

    Article  CAS  Google Scholar 

  67. P. Azadi, J. Otomo, H. Hatano, Y. Oshima, and R. Farnood, Chem. Eng. Sci. 66, 4196 (2011).

    Article  CAS  Google Scholar 

  68. J. Coates, in Encyclopedia of Analytical Chemistry, Ed. by R. A. Meyers (Wiley, Chichester, 2000).

  69. J. A. Medford, A. C. Johnston-Peck, and J. B. Trac, Nanoscale 5, 155 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Grishin.

Additional information

Original Russian Text © A.K. Gatin, M.V. Grishin, S.Yu. Sarvadi, B.R. Shub, 2018, published in Khimicheskaya Fizika, 2018, Vol. 37, No. 3, pp. 47–54.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gatin, A.K., Grishin, M.V., Sarvadi, S.Y. et al. Interaction of Gaseous Reagents on Gold and Nickel Nanoparticles. Russ. J. Phys. Chem. B 12, 317–324 (2018). https://doi.org/10.1134/S1990793118020069

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793118020069

Keywords

Navigation