Skip to main content
Log in

Sensor Properties of Nanostructured Systems Based on Indium Oxide with Co3O4 or ZrO2 Additives

  • Electric and Magnetic Properties of Materials
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The effect of Co3O4 and ZrO2 additives on the sensory response of In2O3-based nanostructured composites to H2 and CO is studied. It is shown that the addition of small amounts of Co3O4 or ZrO2 to In2O3 leads to a sharp increase in the sensory response to hydrogen. The maximum sensory response of the ZrO2−In2O3 composite to 1100 ppm of hydrogen increases from 80 to 270 as the ZrO2 content changes 0 to 20 wt %. The response to CO varies only slightly. For Co3O4−In2O3 composites, the maximum response to H2 and CO increases with the Co3O4 content within 0−10 wt %. A further increase in the Co3O4 content leads to a significant decrease in the response, with composites containing ∼60 wt % Co3O4 being characterized by a very low efficiency. In the Co3O4−In2O3 system with a content of up to 60 wt % Co3O4, electronic conduction is realized, which changes to hole conduction at Co3O4 within 80−100 wt %. In the ZrO2−In2O3 system, electric current flows through In2O3 nanocrystals, i.e., n-type conduction takes place. Possible reasons for the observed effects are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Barsan and U. Weimar, J. Electroceram. 7, 143 (2001).

    Article  CAS  Google Scholar 

  2. N. Yamazoe and K. Shimanoe, Sens. Actuators B 128, 566 (2008).

    Article  CAS  Google Scholar 

  3. L. I. Trakhtenberg, G. N. Gerasimov, V. F. Gromov, et al., in Chemical Sensors: Simulation and Modeling, Ed. by G. Korotcenkov (Momentum, New York, 2012), p. 261.

  4. G. Korotcenkov, Sens. Actuators B 107, 209 (2005).

    Article  CAS  Google Scholar 

  5. C. Wang, L. Yin, L. Zhang, D. Xiang, R. Gao, Sensors 10, 2088 (2010).

    Article  CAS  Google Scholar 

  6. G. N. Gerasimov, V. F. Gromov, and L. I. Trakhtenberg, Synthesis, Structure, and Properties of Metal–Semiconductor Systems Containing Nanostructured Composites, Ed. by L. I. Trakhtenberg and M. Ya. Mel’nikov (Tekhnosfera, Moscow, 2016), p. 487 [in Russian].

  7. C. Aifan, H. Xiaodong, T. Zhangfa, et al., Sens. Actuators B 115, 316 (2006).

    Article  Google Scholar 

  8. C. M. Carney, S. Yoo and Sh. A. Akbar, Sens. Actuators B 108, 29 (2005).

    Article  CAS  Google Scholar 

  9. J. T. McCue and J. Y. Ying, Chem. Mater. 19, 1009 (2007).

    Article  CAS  Google Scholar 

  10. N. Hongsith, E. Wongrat, T. Kerdsharoen, and S. Choopun, Sens. Actuators B 144, 67 (2010).

    Article  CAS  Google Scholar 

  11. W. J. Moon, J. H. Yu, and C. G. Man, Sens. Actuators B 87, 464 (2002).

    Article  CAS  Google Scholar 

  12. U.-S. Choi, G. Sakai, K. Shimanoe, and N. Yamazoe, Sens. Actuators B 98, 166 (2004).

    Article  CAS  Google Scholar 

  13. M. Ivanovskaya, D. Kotsikau, G. Fagliab, and P. Nelli, Sens. Actuators B 96, 498 (2003).

    Article  CAS  Google Scholar 

  14. K. Kim, P. Cho, S. Kim, et al., Sens. Actuators B 123, 318 (2007).

    Article  CAS  Google Scholar 

  15. V. V. Malyshev and A. V. Pislyakov, Sens. Actuators B 123, 71 (2007).

    Article  CAS  Google Scholar 

  16. H. Yamaura, K. Moriya, N. Miura, and N. Yamazoe, Sens. Actuators B 65, 39 (2000).

    Article  CAS  Google Scholar 

  17. G. N. Gerasimov, V. F. Gromov, O. J. Ilegbusi, and L. I. Trakhtenberg, Sens. Actuators B 240, 613 (2017).

    Article  CAS  Google Scholar 

  18. L. I. Trakhtenberg, G. N. Gerasimov, V. F. Gromov, et al., Sens. Actuators B 169, 32 (2012).

    Article  CAS  Google Scholar 

  19. L. I. Trakhtenberg, G. N. Gerasimov, V. F. Gromov, et al., Sens. Actuators B 187, 514 (2013).

    Article  CAS  Google Scholar 

  20. L. I. Trakhtenberg, G. N. Gerasimov, V. F. Gromov, et al., Sens. Actuators B 209, 562 (2015).

    Article  CAS  Google Scholar 

  21. X. Xia, R. J. Oldman, and C. R. A. Catlow, J. Mater. Chem. 22, 8594 (2012).

    Article  CAS  Google Scholar 

  22. S. Ahlers, G. Muller, and T. Doll, Sens. Actuators B 107, 587 (2005).

    Article  CAS  Google Scholar 

  23. D. A. Panayotov and J. T. Yates, J. Phys. Chem. C 111, 2959 (2007).

    Article  CAS  Google Scholar 

  24. W. C. Conner and J. L. Falconer, Chem. Rev. 95, 759 (1995).

    Article  CAS  Google Scholar 

  25. U. S. Choi, G. Sakai, K. Shimanoe, and N. Yamazoe, Sens. Actuators B 98, 166 (2004).

    Article  CAS  Google Scholar 

  26. H. Yamaura, J. Tamaki, K. Moriya, et al., J. Electrochem. Soc. 144, L158 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. F. Gromov.

Additional information

Original Russian Text © V.F. Gromov, G.N. Gerasimov, T.V. Belysheva, M.I. Ikim, E.Yu. Spiridonova, M.M. Grekhov, R.A. Ali-zade, L.I. Trakhtenberg, 2018, published in Khimicheskaya Fizika, 2018, Vol. 37, No. 1, pp. 76–82.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gromov, V.F., Gerasimov, G.N., Belysheva, T.V. et al. Sensor Properties of Nanostructured Systems Based on Indium Oxide with Co3O4 or ZrO2 Additives. Russ. J. Phys. Chem. B 12, 129–134 (2018). https://doi.org/10.1134/S1990793118010062

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793118010062

Keywords

Navigation