Russian Journal of Physical Chemistry B

, Volume 12, Issue 1, pp 129–134 | Cite as

Sensor Properties of Nanostructured Systems Based on Indium Oxide with Co3O4 or ZrO2 Additives

  • V. F. Gromov
  • G. N. Gerasimov
  • T. V. Belysheva
  • M. I. Ikim
  • E. Yu. Spiridonova
  • M. M. Grekhov
  • R. A. Ali-zade
  • L. I. Trakhtenberg
Electric and Magnetic Properties of Materials


The effect of Co3O4 and ZrO2 additives on the sensory response of In2O3-based nanostructured composites to H2 and CO is studied. It is shown that the addition of small amounts of Co3O4 or ZrO2 to In2O3 leads to a sharp increase in the sensory response to hydrogen. The maximum sensory response of the ZrO2−In2O3 composite to 1100 ppm of hydrogen increases from 80 to 270 as the ZrO2 content changes 0 to 20 wt %. The response to CO varies only slightly. For Co3O4−In2O3 composites, the maximum response to H2 and CO increases with the Co3O4 content within 0−10 wt %. A further increase in the Co3O4 content leads to a significant decrease in the response, with composites containing ∼60 wt % Co3O4 being characterized by a very low efficiency. In the Co3O4−In2O3 system with a content of up to 60 wt % Co3O4, electronic conduction is realized, which changes to hole conduction at Co3O4 within 80−100 wt %. In the ZrO2−In2O3 system, electric current flows through In2O3 nanocrystals, i.e., n-type conduction takes place. Possible reasons for the observed effects are discussed.


nanocomposites conductivity In2O3 Co3O4 ZrO2 sensory response reducing gases n- and p-type semiconductors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. Barsan and U. Weimar, J. Electroceram. 7, 143 (2001).CrossRefGoogle Scholar
  2. 2.
    N. Yamazoe and K. Shimanoe, Sens. Actuators B 128, 566 (2008).CrossRefGoogle Scholar
  3. 3.
    L. I. Trakhtenberg, G. N. Gerasimov, V. F. Gromov, et al., in Chemical Sensors: Simulation and Modeling, Ed. by G. Korotcenkov (Momentum, New York, 2012), p. 261.Google Scholar
  4. 4.
    G. Korotcenkov, Sens. Actuators B 107, 209 (2005).CrossRefGoogle Scholar
  5. 5.
    C. Wang, L. Yin, L. Zhang, D. Xiang, R. Gao, Sensors 10, 2088 (2010).CrossRefGoogle Scholar
  6. 6.
    G. N. Gerasimov, V. F. Gromov, and L. I. Trakhtenberg, Synthesis, Structure, and Properties of Metal–Semiconductor Systems Containing Nanostructured Composites, Ed. by L. I. Trakhtenberg and M. Ya. Mel’nikov (Tekhnosfera, Moscow, 2016), p. 487 [in Russian].Google Scholar
  7. 7.
    C. Aifan, H. Xiaodong, T. Zhangfa, et al., Sens. Actuators B 115, 316 (2006).CrossRefGoogle Scholar
  8. 8.
    C. M. Carney, S. Yoo and Sh. A. Akbar, Sens. Actuators B 108, 29 (2005).CrossRefGoogle Scholar
  9. 9.
    J. T. McCue and J. Y. Ying, Chem. Mater. 19, 1009 (2007).CrossRefGoogle Scholar
  10. 10.
    N. Hongsith, E. Wongrat, T. Kerdsharoen, and S. Choopun, Sens. Actuators B 144, 67 (2010).CrossRefGoogle Scholar
  11. 11.
    W. J. Moon, J. H. Yu, and C. G. Man, Sens. Actuators B 87, 464 (2002).CrossRefGoogle Scholar
  12. 12.
    U.-S. Choi, G. Sakai, K. Shimanoe, and N. Yamazoe, Sens. Actuators B 98, 166 (2004).CrossRefGoogle Scholar
  13. 13.
    M. Ivanovskaya, D. Kotsikau, G. Fagliab, and P. Nelli, Sens. Actuators B 96, 498 (2003).CrossRefGoogle Scholar
  14. 14.
    K. Kim, P. Cho, S. Kim, et al., Sens. Actuators B 123, 318 (2007).CrossRefGoogle Scholar
  15. 15.
    V. V. Malyshev and A. V. Pislyakov, Sens. Actuators B 123, 71 (2007).CrossRefGoogle Scholar
  16. 16.
    H. Yamaura, K. Moriya, N. Miura, and N. Yamazoe, Sens. Actuators B 65, 39 (2000).CrossRefGoogle Scholar
  17. 17.
    G. N. Gerasimov, V. F. Gromov, O. J. Ilegbusi, and L. I. Trakhtenberg, Sens. Actuators B 240, 613 (2017).CrossRefGoogle Scholar
  18. 18.
    L. I. Trakhtenberg, G. N. Gerasimov, V. F. Gromov, et al., Sens. Actuators B 169, 32 (2012).CrossRefGoogle Scholar
  19. 19.
    L. I. Trakhtenberg, G. N. Gerasimov, V. F. Gromov, et al., Sens. Actuators B 187, 514 (2013).CrossRefGoogle Scholar
  20. 20.
    L. I. Trakhtenberg, G. N. Gerasimov, V. F. Gromov, et al., Sens. Actuators B 209, 562 (2015).CrossRefGoogle Scholar
  21. 21.
    X. Xia, R. J. Oldman, and C. R. A. Catlow, J. Mater. Chem. 22, 8594 (2012).CrossRefGoogle Scholar
  22. 22.
    S. Ahlers, G. Muller, and T. Doll, Sens. Actuators B 107, 587 (2005).CrossRefGoogle Scholar
  23. 23.
    D. A. Panayotov and J. T. Yates, J. Phys. Chem. C 111, 2959 (2007).CrossRefGoogle Scholar
  24. 24.
    W. C. Conner and J. L. Falconer, Chem. Rev. 95, 759 (1995).CrossRefGoogle Scholar
  25. 25.
    U. S. Choi, G. Sakai, K. Shimanoe, and N. Yamazoe, Sens. Actuators B 98, 166 (2004).CrossRefGoogle Scholar
  26. 26.
    H. Yamaura, J. Tamaki, K. Moriya, et al., J. Electrochem. Soc. 144, L158 (1997).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. F. Gromov
    • 1
    • 2
  • G. N. Gerasimov
    • 1
    • 2
  • T. V. Belysheva
    • 1
    • 2
  • M. I. Ikim
    • 1
  • E. Yu. Spiridonova
    • 1
    • 2
  • M. M. Grekhov
    • 3
  • R. A. Ali-zade
    • 4
  • L. I. Trakhtenberg
    • 1
    • 2
  1. 1.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Karpov Institute of Physical ChemistryMoscowRussia
  3. 3.National Research Nuclear University MEPhIMoscowRussia
  4. 4.Institute of PhysicsAzerbaijan National Academy of SciencesBakuAzerbaijan

Personalised recommendations