Skip to main content

Nanocomposite and Hybrid-Based Electric and Electronic Gas Sensors

  • Chapter
  • First Online:
Handbook of II-VI Semiconductor-Based Sensors and Radiation Detectors

Abstract

This chapter considers the methods for the synthesis of II-VI semiconductors (cadmium and zinc chalcogenides) in the nanocrystalline state, methods for the formation of nanocomposites containing II-VI semiconductors, and summarizes the sensor properties of these composites under thermal and light activation. When detecting gases under thermal activation, the role of II-VI semiconductors in such nanocomposites in most cases is the manipulation of the energy barrier formed due to band bending of contacting semiconductors. Under photoactivation, II-VI semiconductors are responsible for the visible light absorption followed by the generation of photoexcited charge carriers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kurtin S, McGill TC, Mead CA. Fundamental transition in the electronic nature of solids. Phys Rev Lett. 1969;22:1433–6. https://doi.org/10.1103/PhysRevLett.22.1433.

    Article  ADS  Google Scholar 

  2. Jian Y, Hu W, Zhao Z, Cheng P, Haick H, Yao M, Wu W. Gas sensors based on chemi-resistive hybrid functional nanomaterials. Nano-Micro Lett. 2020;12:71. https://doi.org/10.1007/s40820-020-0407-5.

    Article  ADS  Google Scholar 

  3. Miller DR, Akbar SA, Morris PA. Nanoscale metal oxide-based heterojunctions for gas sensing: a review. Sensors Actuators B Chem. 2014;204:250–72. https://doi.org/10.1016/j.snb.2014.07.074.

    Article  Google Scholar 

  4. Henglein A. Photochemistry of colloidal cadmium sulfide. 2. Effects of adsorbed methyl viologen and of colloidal platinum. J Phys Chem. 1982;86:2291–3. https://doi.org/10.1021/j100210a010.

    Article  Google Scholar 

  5. Spanhel L, Haase M, Weller H, Henglein A. Photochemistry of colloidal semiconductors. 20. Surface modification and stability of strong luminescing CdS particles. J Am Chem Soc. 1987;109:5649–55. https://doi.org/10.1021/ja00253a015.

    Article  Google Scholar 

  6. Spanhel L, Weller H, Fojtik A, Henglein A. Photochemistry of semiconductor colloids. 17. Strong luminescing CdS and CdS-Ag2S particles. Ber Bunsenges Phys Chem. 1987;91:88–94. https://doi.org/10.1002/bbpc.19870910204.

    Article  Google Scholar 

  7. Haase M, Weller H, Henglein A. Photochemistry of colloidal semiconductors. 26. Photoelectron emission from cadmium sulfide particles and related chemical effects. J Phys Chem. 1988;92:4706–12. https://doi.org/10.1021/j100327a030.

    Article  Google Scholar 

  8. Rossetti R, Brus LJ. Electron-hole recombination emission as a probe of surface chemistry in aqueous cadmium sulfide colloids. Phys Chem. 1982;86:4470–2. https://doi.org/10.1021/j100220a003.

    Article  Google Scholar 

  9. Rossetti R, Ellison JL, Gibson JM, Brus LE. Size effects in the excited electronic states of small colloidal CdS crystallites. J Chem Phys. 1984;80:4464–9. https://doi.org/10.1063/1.447228.

    Article  ADS  Google Scholar 

  10. Rossetti R, Nakahara S, Brus LE. Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution. J Chem Phys. 1983;79:1086–8. https://doi.org/10.1063/1.445834.

    Article  ADS  Google Scholar 

  11. Murray CB, Norris DJ, Bawendi MG. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc. 1993;115:8706–15. https://doi.org/10.1021/ja00072a025.

    Article  Google Scholar 

  12. Hühn J, Carrillo-Carrion C, Soliman MG, Pfeiffer C, Valdeperez D, Masood A, Chakraborty I, Zhu L, Gallego M, Yue Z, Carril M, Feliu N, Escudero A, Alkilany AM, Pelaz B, del Pino OP, Parak WJ. Selected standard protocols for the synthesis, phase transfer, and characterization of inorganic colloidal nanoparticles. Chem Mater. 2017;29:399–461. https://doi.org/10.1021/acs.chemmater.6b04738.

    Article  Google Scholar 

  13. Jones M, Kumar S, Lo SS, Scholes GD. Exciton trapping and recombination in type II CdSe/CdTe nanorod heterostructures. J Phys Chem C. 2008;112:5423–31. https://doi.org/10.1021/jp711009h.

    Article  Google Scholar 

  14. Dooley CJ, Dimitrov SD, Fiebig T. Ultrafast electron transfer dynamics in CdSe/CdTe donor−acceptor nanorods. J Phys Chem. 2008;112:12074–6. https://doi.org/10.1021/jp804040r.

    Article  Google Scholar 

  15. Shieh F, Saunders AE, Korgel BA. General shape control of colloidal CdS, CdSe, CdTe quantum rods and quantum rod heterostructures. J Phys Chem B. 2005;109:8538–42. https://doi.org/10.1021/jp0509008.

    Article  Google Scholar 

  16. Sun ZH, Oyanagi H, Uehara M, Nakamura H, Yamashita K, Fukano A, Maeda H. Study on initial kinetics of CdSe nanocrystals by a combination of in situ X-ray absorption fine structure and microfluidic reactor. J Phys Chem C. 2009;113:18608–13. https://doi.org/10.1021/jp907481q.

    Article  Google Scholar 

  17. Park J, Lee KH, Galloway JF, Searson PC. Synthesis of cadmium selenide quantum dots from a non-coordinating solvent: growth kinetics and particle size distribution. J Phys Chem C. 2008;112:17849–54. https://doi.org/10.1021/jp803746b.

    Article  Google Scholar 

  18. Crouch DJ, O’Brien P, Malik MA, Skabara PJ, Wright SP. A one-step synthesis of cadmium selenide quantum dots from a novel single source precursor. Chem Commun. 2003;12:1454–5. https://doi.org/10.1039/B301096A.

    Article  Google Scholar 

  19. Milliron DJ, Hughes SM, Cui Y, Manna L, Li J, Wang LW, Alivisatos AP. Colloidal nanocrystal heterostructures with linear and branched topology. Nature. 2004;430:190–5. https://doi.org/10.1038/nature02695.

    Article  ADS  Google Scholar 

  20. Manna L, Milliron DJ, Meisel A, Scher EC, Alivisatos AP. Controlled growth of tetrapod-branched inorganic nanocrystals. Nature Mater. 2003;2:382–5. https://doi.org/10.1038/nmat902.

    Article  ADS  Google Scholar 

  21. Talapin DV, Nelson JH, Shevchenko EV, Aloni S, Sadtler B, Alivisatos AP. Seeded growth of highly luminescent CdSe/CdS nanoheterostructures with rod and tetrapod morphologies. Nano Lett. 2007;7:2951–9. https://doi.org/10.1021/nl072003g.

    Article  ADS  Google Scholar 

  22. Oron D, Kazes M, Banin U. Multiexcitons in type-II colloidal semiconductor quantum dots. Phys Rev B. 2007;75:035330. https://doi.org/10.1103/PhysRevB.75.035330.

    Article  ADS  Google Scholar 

  23. Qu LH, Peng ZA, Peng XG. Alternative routes toward high quality CdSe nanocrystals. Nano Lett. 2001;1:333–7. https://doi.org/10.1021/nl0155532.

    Article  ADS  Google Scholar 

  24. Talapin DV, Koeppe R, Gotzinger S, Kornowski A, Lupton JM, Rogach AL, Benson O, Feldman J, Weller H. Highly emissive colloidal CdSe/CdS heterostructures of mixed dimensionality. Nano Lett. 2003;3:1677–81. https://doi.org/10.1021/nl034815s.

    Article  ADS  Google Scholar 

  25. Peng ZA, Peng X. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J Am Chem Soc. 2001;123:183–4. https://doi.org/10.1021/ja003633m.

    Article  Google Scholar 

  26. Manna L, Scher EC, Alivisatos AP. Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals. J Am Chem Soc. 2000;122:12700–6. https://doi.org/10.1021/ja003055+.

    Article  Google Scholar 

  27. Talapin DV, Haubold S, Rogach AL, Kornowski A, Haase M, Weller H. A novel organometallic synthesis of highly luminescent CdTe nanocrystals. J Phys Chem B. 2001;105:2260–3. https://doi.org/10.1021/jp003177o.

    Article  Google Scholar 

  28. Manna L, Scher EC, Li LS, Alivisatos AP. Epitaxial growth and photochemical annealing of graded CdS/ZnS shells on colloidal CdSe nanorods. J Am Chem Soc. 2002;124:7136–45. https://doi.org/10.1021/ja025946i.

    Article  Google Scholar 

  29. Brennan JG, Siegrist T, Carroll PJ, Stuczynski SM, Reynders P, Brus LE, Steigerwald ML. Bulk and nanostructure Group II-VI compounds from molecular organometallic precursors. Chem Mater. 1990;2:403–9. https://doi.org/10.1021/cm00010a017.

    Article  Google Scholar 

  30. Li Z, Ji Y, Xie R, Grisham SY, Peng X. Correlation of CdS nanocrystal formation with elemental sulfur activation and its implication in synthetic development. J Am Chem Soc. 2011;133:17248–56. https://doi.org/10.1021/ja204538f.

    Article  Google Scholar 

  31. Bullen C, van Embden J, Jasieniak J, Cosgriff JE, Mulder RJ, Rizzardo E, Gu M, Raston CL. High activity phosphine-free selenium precursor solution for semiconductor nanocrystal growth. Chem Mater. 2010;22:4135–43. https://doi.org/10.1021/cm903813r.

    Article  Google Scholar 

  32. Sung TW, Lo YL. Ammonia vapor sensor based on CdSe/SiO2 core–shell nanoparticles embedded in sol–gel matrix. Sensors Actuators B Chem. 2013;188:702–8. https://doi.org/10.1016/j.snb.2013.07.040.

    Article  Google Scholar 

  33. Chizhov AS, Rumyantseva MN, Vasiliev RB, Filatov DG, Drozdov KA, Krylov IV, Abakumov AM, Gaskov AM. Visible light activated room temperature gas sensors based onnanocrystalline ZnO sensitized with CdSe quantum dots. Sensors Actuators B Chem. 2014;205:305–12. https://doi.org/10.1016/j.snb.2014.08.091.

  34. Chizhov A, Vasiliev R, Rumyantseva M, Krylov I, Drozdov K, Batuk M, Hadermann J, Abakumov A, Gaskov A. Light-activated sub-ppm NO2 detection by hybrid ZnO/QD nanomaterials vs. charge localization in core-shell QD. Front Mater. 2019;6:231. https://doi.org/10.3389/fmats.2019.00231.

    Article  ADS  Google Scholar 

  35. Chizhov A, Rumyantseva M, Vasiliev R, Filatova D, Drozdov K, Krylov I, Marchevsky A, Karakulina O, Abakumov A, Gaskov A. Visible light activation of room temperature NO2 gas sensors based on ZnO, SnO2 and In2O3 sensitized with CdSe quantum dots. Thin Solid Films. 2016;618:253–62. https://doi.org/10.1016/j.tsf.2016.09.029.

    Article  ADS  Google Scholar 

  36. Li LS, Pradhan N, Wang Y, Peng X. High quality ZnSe and ZnS nanocrystals formed by activating zinc carboxylate precursors. Nano Lett. 2004;4:2261–4. https://doi.org/10.1021/nl048650e.

    Article  ADS  Google Scholar 

  37. Pradhan N, Peng X. Efficient and color-tunable Mn-doped ZnSe nanocrystal emitters: control of optical performance via greener synthetic chemistry. J Am Chem Soc. 2007;129:3339–47. https://doi.org/10.1021/ja068360v.

    Article  Google Scholar 

  38. Pradhan N, Goorskey D, Thessing J, Peng X. An alternative of CdSe nanocrystal emitters: pure and tunable impurity emissions in ZnSe nanocrystals. J Am Chem Soc. 2005;127:17586–7. https://doi.org/10.1021/ja055557z.

    Article  Google Scholar 

  39. Hines MA, Guyot-Sionnest P. Bright UV-blue luminescent colloidal ZnSe Nanocrystals. J Phys Chem B. 1998;102:3655–7. https://doi.org/10.1021/jp9810217.

    Article  Google Scholar 

  40. van Embden J, Chesman ASR, Jasieniak JJ. The heat-up synthesis of colloidal nanocrystals. Chem Mater. 2015;27:2246–85. https://doi.org/10.1021/cm5028964.

    Article  Google Scholar 

  41. Yang YA, Wu H, Williams KR, Cao YC. Synthesis of CdSe and CdTe nanocrystals without precursor injection. Angew Chem Int Ed. 2005;44:6712–5. https://doi.org/10.1002/anie.200502279.

    Article  Google Scholar 

  42. Ouyang J, Vincent M, Kingston D, Descours P, Boivineau T, Zaman MB, Wu X, Yu K. Noninjection, one-pot synthesis of photoluminescent colloidal homogeneously alloyed CdSeS quantum dots. J Phys Chem C. 2009;113:5193–200. https://doi.org/10.1021/jp8110138.

    Article  Google Scholar 

  43. Jia J, Tian J, Mi W, Tian W, Liu X, Dai J, Wang X. Growth kinetics of CdSe nanocrystals synthesized in liquid paraffin via one-pot method. J Nanopart Res. 2013;15:1724. https://doi.org/10.1007/s11051-013-1724-0.

    Article  Google Scholar 

  44. Park E, Ryu J, Choi Y, Hwang KJ, Song R. Photochemical properties and shape evolution of CdSe QDs in a non-injection reaction. Nanotechnology. 2013;24:145601. https://doi.org/10.1088/0957-4484/24/14/145601.

    Article  ADS  Google Scholar 

  45. Zhu CQ, Wang P, Wang X, Li Y. Facile phosphine-free synthesis of CdSe/ZnS Core/Shell nanocrystals without precursor injection. Nanoscale Res Lett. 2008;3:213. https://doi.org/10.1007/s11671-008-9139-z.

    Article  ADS  Google Scholar 

  46. Zhuang Z, Lu X, Peng Q, Li Y. A facile “dispersion–decomposition” route to metal sulfide nanocrystals. Chem Eur J. 2011;17:10445–52. https://doi.org/10.1002/chem.201101145.

    Article  Google Scholar 

  47. Liu Y, Tang Y, Ning Y, Li M, Zhang H, Yanga B. “One-pot” synthesis and shape control of ZnSe semiconductor nanocrystals in liquid paraffin. J Mater Chem. 2010;20:4451–8. https://doi.org/10.1039/C0JM00115E.

    Article  Google Scholar 

  48. Zhang J, Sun K, Kumbhar A, Fang J. Shape-control of ZnTe nanocrystal growth in organic solution. J Phys Chem C. 2008;112:5454–8. https://doi.org/10.1021/jp711778u.

    Article  Google Scholar 

  49. Zhong H, Zhou Y, Ye M, He Y, Ye J, He C, Yang C, Li Y. Controlled synthesis and optical properties of colloidal ternary chalcogenide CuInS2 nanocrystals. Chem Mater. 2008;20:6434–43. https://doi.org/10.1021/cm8006827.

    Article  Google Scholar 

  50. Liao HC, Jao MH, Shyue JJ, Chen YF, Su WF. Facile synthesis of wurtzite copper–zinc–tin sulfide nanocrystals from plasmonic djurleite nuclei. J. Mater Chem A. 2013;1:337–41. https://doi.org/10.1039/C2TA00151A.

  51. Choi CL, Alivisatos AP. From artificial atoms to nanocrystal molecules: preparation and properties of more complex nanostructures. Annu Rev Phys Chem. 2010;61:369–89. https://doi.org/10.1146/annurev.physchem.012809.103311.

    Article  Google Scholar 

  52. Carbone L, Cozzoli PD. Colloidal heterostructured nanocrystals: synthesis and growth mechanisms. Nano Today. 2010;5:449–93. https://doi.org/10.1016/j.nantod.2010.08.006.

    Article  Google Scholar 

  53. Oh MH, Cho MG, Chung DY, Park I, Kwon YP, Ophus C, Kim D, Kim MG, Jeong B, Gu XW, Jo J, Yoo JM, Hong J, McMains S, Kang K, Sung YE, Alivisatos AP, Hyeon T. Design and synthesis of multigrain nanocrystals via geometric misfit strain. Nature. 2020;577:359–63. https://doi.org/10.1038/s41586-019-1899-3.

    Article  ADS  Google Scholar 

  54. Costi R, Saunders AE, Banin U. Colloidal hybrid nanostructures: a new type of functional materials. Angew Chem Int Ed. 2010;49:4878–97. https://doi.org/10.1002/anie.200906010.

    Article  Google Scholar 

  55. Schartl W. Current directions in core–shell nanoparticle design. Nanoscale. 2010;2:829–43. https://doi.org/10.1039/C0NR00028K.

    Article  ADS  Google Scholar 

  56. Reiss P, Protière M, Li L. Core/shell semiconductor nanocrystals. Small. 2009;5:154–68. https://doi.org/10.1002/smll.200800841.

    Article  Google Scholar 

  57. Li JJ, Tsay JM, Michalet X, Weiss S. Wavefunction engineering: from quantum wells to near-infrared type-II colloidal quantum dots synthesized by layer-by-layer colloidal epitaxy. Chem Phys. 2005;318:82–90. https://doi.org/10.1016/j.chemphys.2005.04.029.

    Article  Google Scholar 

  58. Blackman B, Battaglia DM, Mishima TD, Johnson MB, Peng X. Control of the morphology of complex semiconductor nanocrystals with a type II heterojunction, dots vs peanuts, by thermal cycling. Chem Mater. 2007;19:3815–21. https://doi.org/10.1021/cm0704682.

    Article  Google Scholar 

  59. Li JJ, Wang YA, Guo W, Keay JC, Mishima TD, Johnson MB, Peng X. Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction. J Am Chem Soc. 2003;125:12567–75. https://doi.org/10.1021/ja0363563.

    Article  Google Scholar 

  60. Dun M, Tan J, Tan W, Tang M, Huang X. CdS quantum dots supported by ultrathin porous nanosheets assembled into hollowed-out Co3O4 microspheres: a room-temperature H2S gas sensor with ultra-fast response and recovery. Sensors Actuators B Chem. 2019;298:126839. https://doi.org/10.1016/j.snb.2019.126839.

    Article  Google Scholar 

  61. Yoshimura M, Byrappa K. Hydrothermal processing of materials: past, present and future. J Mater Sci. 2008;43:2085–103. https://doi.org/10.1007/s10853-007-1853-x.

    Article  ADS  Google Scholar 

  62. Sun J, Sun L, Han N, Chu H, Bai H, Shu X, Luo R, Chen A. rGO decorated CdS/CdO composite for detection of low concentration NO2. Sensors Actuators B Chem. 2019;299:126832. https://doi.org/10.1016/j.snb.2019.126832.

    Article  Google Scholar 

  63. Shao S, Che L, Chen Y, Lai M, Huang S, Koehn R. A novel RGO-MoS2-CdS nanocomposite film for application in the ultrasensitive NO2 detection. J Alloys Compd. 2019;774:1–10. https://doi.org/10.1016/j.jallcom.2018.09.271.

    Article  Google Scholar 

  64. Liu W, Gu D, Li X. Detection of ppb-level NO2 using mesoporous ZnSe/SnO2 core-shell microspheres based chemical sensors. Sensors Actuators B Chem. 2020;320:128365. https://doi.org/10.1016/j.snb.2020.128365.

  65. Chen Q, Ma SY, Xu XL, Jiao HY, Zhang GH, Liu LW, Wang PY, Gengzang DJ, Yao HH. Optimization ethanol detection performance manifested by gas sensor based on In2O3/ZnS rough microspheres. Sensors Actuators B Chem. 2018;264:263–78. https://doi.org/10.1016/j.snb.2018.02.172.

  66. Laatar F. Synthesis of the PS/CdSeNRs composite for room temperature NO2 gas sensing. SILICON. 2021;13:4155–62. https://doi.org/10.1007/s12633-020-00646-4.

    Article  Google Scholar 

  67. Li M, Ren W, Wu R, Zhang M. CeO2 enhanced ethanol sensing performance in a CdS gas sensor. Sensors. 2017;17:1577. https://doi.org/10.3390/s17071577.

    Article  ADS  Google Scholar 

  68. Zhang N, Ma X, Yin Y, Chen Y, Li C, Yin J, Ruan S. Synthesis of CuO–CdS composite nanowires and their ultrasensitive ethanol sensing properties. Inorg Chem Front. 2019;6:238–47. https://doi.org/10.1039/c8qi00951a.

    Article  ADS  Google Scholar 

  69. Zhai J, Wang L, Wang D, Li H, Zhang Y, He D, Xie T. Enhancement of gas sensing properties of CdS nanowire/ZnO nanosphere composite materials at room temperature by visible-light activation. ACS Appl Mater Interfaces. 2011;3:2253–8. https://doi.org/10.1021/am200008y.

    Article  Google Scholar 

  70. Hieu NM, Lam DV, Hien TT, Chinh ND, Quang ND, Hung NM, Phuoc CV, Lee SM, Jeong JR, Kim C, Kim D. ZnTe-coated ZnO nanorods: hydrogen sulfide nano-sensor purely controlled by pn junction. Mater Design. 2020;191:108628. https://doi.org/10.1016/j.matdes.2020.108628.

  71. Liang YC, Xu NC. Synthesis of TiO2–ZnS nanocomposites via sacrificial template sulfidation and their ethanol gas-sensing performance. RSC Adv. 2018;8:22437. https://doi.org/10.1039/c8ra04157a.

    Article  ADS  Google Scholar 

  72. Hasani A, Dehsari HS, Zarandi AA, Salehi A, Taromi FA, Kazeroni H. Visible light-assisted photoreduction of graphene oxide using CdS nanoparticles and gas sensing properties. J Nanomater. 2015;2015:930306. https://doi.org/10.1155/2015/930306.

    Article  Google Scholar 

  73. Han Y, Liu Y, Su C, Wang S, Li H, Zeng M, Hu N, Su Y, Zhou Z, Wei H, Yang Z. Interface engineered WS2/ZnS heterostructures for sensitive and reversible NO2 room temperature sensing. Sensors Actuators B Chem. 2019;296:126666. https://doi.org/10.1016/j.snb.2019.126666.

    Article  Google Scholar 

  74. Gad AE, Hoffmann M, Leuning T, Prades JD, Hernandez-Ramirez F, Shen H, Mathur S. Solar Driven Zinc Oxide Based Heterojunctions for Gas Sensing Applications. In: Proceedings of 14th Meeting on Chemical Sensors-IMCS 2012, 1312–1315, 20-23.05.2012, Nürnburg, Germany; 2012. https://doi.org/10.5162/IMCS2012/P2.0.16.

  75. Zhai J, Wang D, Peng L, Lin Y, Li X, Xie T. Visible-light-induced photoelectric gas sensing to formaldehyde based on CdS nanoparticles/ZnO heterostructures. Sensors Actuators B Chem. 2010;147:234–40. https://doi.org/10.1016/j.snb.2010.03.003.

  76. Geng J, Jia XD, Zhu JJ. Sonochemical selective synthesis of ZnO/CdS core/shell nanostructures and their optical properties. CrystEngComm. 2011;13:193–8. https://doi.org/10.1039/c0ce00180e.

    Article  Google Scholar 

  77. Palanisamy B, Paul B, Chang C. The synthesis of cadmium sulfide nanoplatelets using a novel continuous flow sonochemical reactor. Ultrason Sonochem. 2015;26:452–60. https://doi.org/10.1016/j.ultsonch.2015.01.004.

    Article  Google Scholar 

  78. Ghows N, Entezari MH. A novel method for the synthesis of CdS nanoparticles without surfactant. Ultrason Sonochem. 2011;18:269–75. https://doi.org/10.1016/j.ultsonch.2010.06.008.

    Article  Google Scholar 

  79. Villani M, Calestani D, Lazzarini L, Zanotti L, Mosca R, Zappettini A. Extended functionality of ZnO nanotetrapods by solution-based coupling with CdS nanoparticles. J Mater Chem. 2012;22:5694–9. https://doi.org/10.1039/c2jm16164h.

    Article  Google Scholar 

  80. De Guire MR, Bauermann LP, Parikh H, Bill J. Chapter 14: Chemical bath deposition. In: Schneller T, Waser R, Kosec M, Payne D, editors. Chemical solution deposition of functional oxide thin films. Vienna: Springer; 2013. p. 319–39. https://doi.org/10.1007/978-3-211-99311-8_14.

    Chapter  Google Scholar 

  81. Jaiswal J, Sanger A, Tiwari P, Chandra R. MoS2 hybrid heterostructure thin film decorated with CdTe quantum dots for room temperature NO2 gas sensor. Sensors Actuators B Chem. 2020;305:127437. https://doi.org/10.1016/j.snb.2019.127437.

    Article  Google Scholar 

  82. Jaiswal J, Singh P, Chandra R. Low-temperature highly selective and sensitive NO2 gas sensors using CdTe-functionalized ZnO filled porous Si hybrid hierarchical nanostructured thin films. Sensors Actuators B Chem. 2021;327:128862. https://doi.org/10.1016/j.snb.2020.128862.

    Article  Google Scholar 

  83. Kar S, Chaudhuri S. Shape selective growth of CdS one-dimensional nanostructures by a thermal evaporation process. J Phys Chem B. 2006;110:4542–7. https://doi.org/10.1016/10.1021/jp056058n.

    Article  Google Scholar 

  84. Park S, Sun GJ, Kheel H, Ko T, Kim HW, Lee C. Light-activated NO2 gas sensing of the networked CuO-decorated ZnS nanowire gas sensor. Appl Phys A Mater Sci Process. 2016;122:504. https://doi.org/10.1007/s00339-016-0042-7.

    Article  ADS  Google Scholar 

  85. Kim KK, Kim D, Kang SH, Park S. Detection of ethanol gas using In2O3 nanoparticle-decorated ZnS nanowires. Sensors Actuators B Chem. 2017;248:43–9. https://doi.org/10.1016/j.snb.2017.03.120.

  86. Zhang Q, Li H, Ma Y, Zhai T. ZnSe nanostructures: synthesis, properties and applications. Prog Mater Sci. 2016;83:472–535. https://doi.org/10.1016/j.pmatsci.2016.07.005.

    Article  Google Scholar 

  87. Yoon YJ, Park KS, Heo JH, Park JG, Nahm S, Choi KJ. Synthesis of ZnxCd1-xSe (0 ≤ x ≤ 1) alloyed nanowires for variable-wavelength photodetectors. J Mater Chem. 2010;20:2386–90. https://doi.org/10.1039/b917531h.

  88. Park S, Kim S, Lee WI, Kim KK, Lee C. Room temperature, ppb-level NO2 gas sensing of multiple networked ZnSe nanowire sensors under UV illumination. Beilstein J Nanotechnol. 2014;5:1836–41. https://doi.org/10.3762/bjnano.5.194.

  89. Wang X, Xie Z, Huang H, Liu Z, Chen D, Shen G. Gas sensors, thermistor and photodetector based on ZnS nanowires. J Mater Chem. 2012;22:6845–50. https://doi.org/10.1039/c2jm16523f.

    Article  Google Scholar 

  90. Park S, Kim S, Ko H, Lee C. Light-enhanced gas sensing of ZnS-core/ZnO-shell nanowires at room temperature. J Electroceram. 33:75–81. https://doi.org/10.1007/s10832-014-9923-3.

  91. Larramona G, Choné C, Jacob A, Sakakura D, Delatouche B, Péré D, Cieren X, Nagino M, Bayón R. Nanostructured photovoltaic cell of the type titanium dioxide, cadmium sulfide thin coating, and copper thiocyanate showing high quantum efficiency. Chem Mater. 2006;18:1688–96. https://doi.org/10.1021/cm052819n.

    Article  Google Scholar 

  92. Guijarro N, Lana-Villarreal T, Shen Q, Toyoda T, Gómez R. Sensitization of titanium dioxide photoanodes with cadmium selenide quantum dots prepared by SILAR: Photoelectrochemical and carrier dynamics studies. J Phys Chem C. 2010;114:21928–37. https://doi.org/10.1021/jp105890x.

    Article  Google Scholar 

  93. Lee W, Min SK, Dhas V, Ogale SB, Han SH. Chemical bath deposition of CdS quantum dots on vertically aligned ZnO nanorods for quantum dots-sensitized solar cells. Electrochem Commun. 2009;11:103–6. https://doi.org/10.1016/j.elecom.2008.10.042.

    Article  Google Scholar 

  94. Gad A, Hoffmann MWG, Prades JD, Hernandez-Ramirez F, Fiz R, Shen H, Mathur S, Waag A. Self-Powered Solar Diode Gas Sensors. Extended Abstracts of the 2014 International Conference on Solid State Devices and Materials, Tsukuba; 2014, pp. 572–573. https://doi.org/10.7567/SSDM.2014.D-1-4

  95. Laera AM, Mirenghi L, Cassano G, Capodieci L, Ferrara MC, Mazzarelli S, Schioppa M, Dimaio D, Rizzo A, Penza M, Tapfer L. Synthesis of nanocrystalline ZnS/TiO2 films for enhanced NO2 gas sensing. Thin Solid Films. 2020;709:138190. https://doi.org/10.1016/j.tsf.2020.138190.

  96. Liu W, Gu D, Li X. Ultrasensitive NO2 detection utilizing mesoporous ZnSe/ZnO heterojunction-based chemiresistive-type sensors. ACS Appl Mater Interfaces. 2019;11:29029–40. https://doi.org/10.1021/acsami.9b07263.

    Article  Google Scholar 

  97. Yu XL, Ji HM, Wang HL, Sun J, Du XW. Synthesis and sensing properties of ZnO/ZnS nanocages. Nanoscale Res Lett. 2010;5:644–8. https://doi.org/10.1007/s11671-010-9528-y.

    Article  ADS  Google Scholar 

  98. Zhang W, Wang S, Wang Y, Zhu Z, Gao X, Yang J, Zhang H. ZnO@ZnS core/shell microrods with enhanced gas sensing properties. RSC Adv. 2015;5:2620–9. https://doi.org/10.1039/c4ra12803f.

    Article  ADS  Google Scholar 

  99. Vasiliev R, Babynina A, Maslova O, Rumyantseva M, Ryabova L, Dobrovolsky A, Drozdov K, Khokhlov D, Abakumov A, Gaskov A. Photoconductivity of nanocrystalline SnO2 sensitized with colloidal CdSe quantum dots. J Mater Chem C. 2013;1:1005–10. https://doi.org/10.1039/c2tc00236a.

    Article  Google Scholar 

  100. Bley S, Diez M, Albrecht F, Resch S, Waldvogel SR, Menzel A, Zacharias M, Gutowski J, Voss T. Electron tunneling from colloidal CdSe quantum dots to ZnO Nanowires studied by time-resolved luminescence and photoconductivity experiments. J Phys Chem C. 2015;119:15627–35. https://doi.org/10.1021/acs.jpcc.5b01392.

  101. Liu W, Gu D, Zhang JW, Li XG, Rumyantseva MN, Gaskov AM. ZnSe/NiO heterostructure-based chemiresistive-type sensors for low-concentration NO2 detection. Rare Metals. 2021;40:1632–41. https://doi.org/10.1007/s12598-020-01564-5.

    Article  Google Scholar 

  102. He P, Fu H, Yang X, Xiong S, Han D, An X. Variable gas sensing performance towards different volatile organic compounds caused by integration types of ZnS on In2O3 hollow spheres. Sensors Actuators B Chem. 2021;345:130316. https://doi.org/10.1016/j.snb.2021.130316.

    Article  Google Scholar 

  103. Rumyantseva M, Kovalenko V, Gaskov A, Makshina E, Yuschenko V, Ivanova I, Ponzoni A, Faglia G, Comini E. Nanocomposites SnO2/Fe2O3: sensor and catalytic properties. Sensors Actuators B Chem. 2006;118:208–14. https://doi.org/10.1016/j.snb.2006.04.024.

    Article  Google Scholar 

  104. Vladimirova SA, Rumyantseva MN, Filatova DG, Chizhov AS, Khmelevsky NO, Konstantinova EA, Kozlovsky VF, Marchevsky AV, Karakulina OM, Hadermann J, Gaskov AM. Cobalt location in p-CoOx/n-SnO2 nanocomposites: correlation with gas sensor performances. J Alloys Compd. 2017;721:249–60. https://doi.org/10.1016/j.jallcom.2017.05.332.

    Article  Google Scholar 

  105. Chizhov A, Rumyantseva M, Gaskov A. Light activation of nanocrystalline metal oxides for gas sensing: principles, achievements, challenges. Nanomaterials. 2021;11:892. https://doi.org/10.3390/nano11040892.

    Article  Google Scholar 

  106. Hou D, Dev A, Frank K, Rosenauer A, Voss T. Oxygen-controlled photoconductivity in ZnO nanowires functionalized with colloidal CdSe quantum dots. J Phys Chem C. 2012;116:19604–10. https://doi.org/10.1021/jp307235u.

    Article  Google Scholar 

  107. Drozdov KA, Kochnev VI, Dobrovolsky AA, Popelo AV, Rumyantseva MN, Gaskov AM, Ryabova LI, Khokhlov DR, Vasiliev RB. Photoconductivity of structures based on the SnO2 porous matrix coupled with core-shell CdSe/CdS quantum dots. Appl Phys Lett. 2013;103:133115. https://doi.org/10.1063/1.4823549.

    Article  ADS  Google Scholar 

  108. Zhang Q, Ma S, Zhang R, Zhu K, Tie Y, Pei S. Optimization NH3 sensing performance manifested by gas sensor based on Pr-SnS2/ZnS hierarchical nanoflowers. J Alloys Compd. 2019;807:151650. https://doi.org/10.1016/j.jallcom.2019.151650.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by RFBR grant 21-53-53018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina N. Rumyantseva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vasiliev, R.B., Chizhov, A.S., Rumyantseva, M.N. (2023). Nanocomposite and Hybrid-Based Electric and Electronic Gas Sensors. In: Korotcenkov, G. (eds) Handbook of II-VI Semiconductor-Based Sensors and Radiation Detectors. Springer, Cham. https://doi.org/10.1007/978-3-031-24000-3_8

Download citation

Publish with us

Policies and ethics