Skip to main content
Log in

Initial uptake of NO2 on methane flame soot

  • Chemical Physics of Atmospheric Phenomena
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

A thermostated flow reactor with a movable soot-coated insert coupled to a high-resolution mass spectrometer with low-energy electron ionization is used to study the uptake of NO2 reagent gas at [NO2] = 1 × 1012−2 × 1013 cm−3 and a humidity of [H2O] = 5 × 1012−1.8 × 1015 cm−3. The BET (Brunnauer-Emmett-Teller) method is used to determine the specific surface area of the soot coating: (40 ± 10 (2σ)) m2/g. A set of time-dependent uptake coefficients of NO2 on fresh soot coatings in this range of reactant gas concentrations is determined. An analysis of the experimental data shows that the uptake coefficient depends on the time as 1/γ(t) = 1/γ0 + c 1 t and yields the dependences of the parameters γ0 and c 1 on the NO2 concentration: 1/γ0 = c 2 + c 3[NO2] and c 1 = k[NO2] with constants c 2 = (6.5 ± 1.3) × 103, c 3 = (5.6 ± 1.3) × 10−10 cm3 molecule−1, and k = (2.4 ± 0.2) × 10−10 cm3 molecule−1 s−1. The gas-phase products of NO2 uptake on soot are NO and HONO, with the NO yield constituting ∼50% of the reacted NO2. It is experimentally demonstrated that an increase in the humidity causes no changes in the uptake coefficient and in the composition and ratio of the products. The initial stage of NO2 uptake on a methane soot coating is described using the Langmuir adsorption model, according to which the process of uptake consists of a sequence of elementary steps, such as reversible adsorption, surface complex formation, and its subsequent unimolecular decomposition to form products. Interpretation of the experimental dependence γ0 = f([NO2]) enables to estimate the Langmuir constant for the NO2-methane soot pair, K L = (8.6 ± 2.6) × 10−14 cm3 molecule−1, the rate constant for NO2 desorption from the soot coating, k d = (530 ± 160) s−1, and the rate constant for the monomolecular decomposition of the surface complex, k r = (8.2 ± 2.5) × 10−2 s−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Liousse, J. E. Penner, C. Chuang, et al., J. Geophys. Res. D 101, 19411 (1996).

    Article  CAS  Google Scholar 

  2. A. D. A. Hansen, B. A. Bodhaine, E. G. Dutton, and R. C. Schnell, Geophys. Res. Lett. 15, 1193 (1988).

    Article  CAS  Google Scholar 

  3. D. Stadler and M. J. Rossi, Phys. Chem. Chem. Phys. 2, 5420 (2000).

    Article  CAS  Google Scholar 

  4. D. J. Lary, A. M. Lee, R. Toumi, et al., J. Geophys. Res. D 102, 3671 (1997).

    Article  CAS  Google Scholar 

  5. B. Aumont, S. Madronich, M. Ammann, et al., J. Geophys. Res. D 104, 1729 (1999).

    Article  CAS  Google Scholar 

  6. J. N. Pitts, Jr., B. Zielinska, J. A. Sweetman, et al., Atmos. Environ. 19, 911 (1985).

    Article  CAS  Google Scholar 

  7. G. Lammel and T. Novakov, Atmos. Environ. 29, 813 (1995).

    Article  CAS  Google Scholar 

  8. A. Febo, C. Perrino, and I. Allegrini, Atmos. Environ. 30, 3509 (1996).

    Article  Google Scholar 

  9. G. Lammel and J. N. Cape, Chem. Soc. Rev. 25, 361 (1996).

    Article  CAS  Google Scholar 

  10. W. Junkermann and T. Ibusuki, Atmos. Environ. 26, 3099 (1992).

    Article  Google Scholar 

  11. M. Ammann, M. Kalberer, D. T. Jost, et al., Nature 395, 157 (1998).

    Article  CAS  Google Scholar 

  12. C. Alcala-Jornod, H. van den Bergh, and M. J. Rossi, Phys. Chem. Chem. Phys. 2, 5584 (2000).

    Article  CAS  Google Scholar 

  13. A. A. Onischuk, S. di Stasio, V. V. Karasev, et al., J. Aerosol Sci. 34, 383 (2003).

    Article  CAS  Google Scholar 

  14. R. A. Dobbings, Aerosol Sci. Technol. 41, 485 (2007).

    Article  Google Scholar 

  15. M. S. Akhter, A. R. Chughtai, and D. M. Smith, Appl. Spectrosc. 39, 143 (1985).

    Article  CAS  Google Scholar 

  16. M. S. Salgado and M. J. Rossi, Int. J. Chem. Kinet. 34, 620 (2002).

    Article  CAS  Google Scholar 

  17. C. E. Kolb, R. A. Cox, J. P. D. Abbatt, et al., Atmos. Chem. Phys. 10, 10561 (2010).

    Article  CAS  Google Scholar 

  18. D. G. Aubin and J. P. D. Abbatt, J. Phys. Chem. A 111, 6263 (2007).

    Article  CAS  Google Scholar 

  19. A. F. Khalizov, M. Cruz-Quinones, and R. Zhang, J. Phys. Chem. A 114, 7516 (2010).

    Article  CAS  Google Scholar 

  20. M. E. Monge, B. D’Anna, L. Mazri, et al., Proc. Natl. Acad. Sci. 107, 6605 (2010).

    Article  CAS  Google Scholar 

  21. C. Han, Y. Liu, C. Liu, et al., J. Phys. Chem. A 116, 4129 (2012).

    Article  CAS  Google Scholar 

  22. H. A. Al-Abadleh and V. H. Grassian, J. Phys. Chem. A 104, 11933 (2000).

    Article  Google Scholar 

  23. S. Lelievre, Yu. Bedjanian, G. Laverdet, and G. le Bras, J. Phys. Chem. A 108, 10807 (2004).

    Article  CAS  Google Scholar 

  24. A. Gerecke, A. Thielmann, L. Gutzwiller, and M. J. Rossi, Geophys. Res. Lett. 25, 2453 (1998).

    Article  CAS  Google Scholar 

  25. F. Arens, L. Gutzwiller, U. Baltensperger, et al., Environ. Sci. Technol. 35, 2191 (2001).

    Article  CAS  Google Scholar 

  26. A. R. Chughtai, W. F. Welch, and M. Smith, Carbon 28, 411 (1990).

    Article  CAS  Google Scholar 

  27. M. Kalberer, M. Ammann, F. Arens, et al., J. Geophys. Res. D 104, 13825 (1999).

    Article  CAS  Google Scholar 

  28. J. Kleffmann, K. H. Becker, M. Lackhoff, and P. Wiesen, Phys. Chem. Chem. Phys. 1, 5443 (1999).

    Article  CAS  Google Scholar 

  29. C. A. Longfellow, A. R. Ravishankara, and D. R. Hanson, J. Geophys. Res. D 104, 13833 (1999).

    Article  CAS  Google Scholar 

  30. U. Kirchner, V. Scheer, and R. Vogt, J. Phys. Chem. A 104, 8908 (2000).

    Article  CAS  Google Scholar 

  31. V. V. Zelenov, E. V. Aparina, A. V. Chudinov, and S. A. Kashtanov, Russ. J. Phys. Chem. B 4, 399 (2010).

    Article  Google Scholar 

  32. K. J. Laidler, Chemical Kinetics, 2nd ed. (McGraw-Hill, New York, 1965).

    Google Scholar 

  33. K. Tabor, L. Gutzwiller, and M. J. Rossi, J. Phys. Chem. 98, 6172 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Zelenov.

Additional information

Original Russian Text © V.V. Zelenov, E.V. Aparina, S.A. Kashtanov, E.V. Shardakova, 2015, published in Khimicheskaya Fizika, 2015, Vol. 34, No. 3, pp. 87–96.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zelenov, V.V., Aparina, E.V., Kashtanov, S.A. et al. Initial uptake of NO2 on methane flame soot. Russ. J. Phys. Chem. B 9, 327–335 (2015). https://doi.org/10.1134/S1990793115020141

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793115020141

Keywords

Navigation