Skip to main content
Log in

Kinetics of NO3 uptake on a methane soot coating

  • Chemical Physics of Atmospheric Phenomena
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The dependence of the initial rate of NO3 uptake on a methane soot coating at two temperatures (256 and 297 K) and NO3 concentrations of 2.4 × 1012 to 3.6 × 1013 cm–3 is studied using a flow reactor with a movable insert and mass-spectrometric detection. It is found that, in this concentration range, the uptake of NO3, unlike that of NO2 and N2O5, occurs by the impact recombination mechanism. It is demonstrated that, before being deactivated, each active surface site destroys ~100 and ~150 NO3 radicals at 297 K and 256 K, respectively. The uptake coefficient calculated per specific BET surface of the soot coating depends on the exposure time as γ(t) = γ0exp(−t/τ), where γ0 and τ are NO3-concentration-dependent parameters. Based on the Langmuir concept of adsorption, the elementary parameters that control the uptake process are determined, such as the desorption rate constant k d = ν dexp(−Q ad/RT) at νd = 3 × 109 s–1 and the heat of adsorption, Qad = 42.6 kJ mol–1, as well as the rate constant of the bimolecular heterogeneous reaction of deactivation of active surface sites, k r = A rexp(–Ea/RT), with A r = 1.1 × 10–11 cm3 s–1 and E a = 9.5 kJ mol–1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. S. Brown, W. P. Dubé, J. Peischl, et al., J. Geophys. Res. D 116, 24305 (2011).

    Google Scholar 

  2. W. S. Goliff, M. Luria, D. R. Blake, et al., Atmos. Environ. 114, 102 (2015).

    Article  CAS  Google Scholar 

  3. J. L. Fry and K. Sackinger, Atmos. Chem. Phys. 12, 8797 (2012).

    Article  CAS  Google Scholar 

  4. F. Öztürk, R. Bahreini, N. L. Wagner, et al., J. Geophys. Res. Atmos 118, 13591 (2013).

    Article  Google Scholar 

  5. E. Kostenidou, K. Florou, C. Kaltsonoudis, et al., Atmos. Chem. Phys. 15, 11355 (2015).

    Article  CAS  Google Scholar 

  6. D. Stadler and M. J. Rossi, Phys. Chem. Chem. Phys. 2, 5420 (2000).

    Article  CAS  Google Scholar 

  7. J. B. Cohen and C. Wang, J. Geophys. Res. Atmos. 119, 307 (2014).

    Article  CAS  Google Scholar 

  8. M. S. Akhter, A. R. Chughtai, and D. M. Smith, Appl. Spectrosc. 39, 143 (1985).

    Article  CAS  Google Scholar 

  9. M. S. Salgado and M. J. Rossi, Int. J. Chem. Kinet. 34, 620 (2002).

    Article  CAS  Google Scholar 

  10. D. A. Knopf, B. Wang, A. Laskin, et al., Geophys. Res. Lett. 37, L11803 (2010).

    Article  Google Scholar 

  11. T. C. Bond, S. J. Doherty, D. W. Fahey, et al., J. Geophys. Res. Atmos. 118, 5380 (2013).

    Article  CAS  Google Scholar 

  12. M. Laborde, M. Crippa, T. Tritscher, et al., Atmos. Chem. Phys. 13, 5831 (2013).

    Article  Google Scholar 

  13. F. Arens, L. Gutzwiller, U. Baltensperger, et al., Environ. Sci. Technol. 35, 2191 (2001).

    Article  CAS  Google Scholar 

  14. Y. Rudich, N. M. Donahue, and T. F. Mentel, Ann. Rev. Phys. Chem. 58, 321 (2007).

    Article  CAS  Google Scholar 

  15. U. Kirchner, V. Scheer, and R. Vogt, J. Phys. Chem. A 104, 8908 (2000).

    Article  CAS  Google Scholar 

  16. H. Saathoff, K.-H. Naumann, N. Riemer, et al., Geophys. Res. Lett. 28, 1957 (2001).

    Article  CAS  Google Scholar 

  17. F. Karagulian and M. J. Rossi, J. Phys. Chem. A 111, 1914 (2007).

    Article  CAS  Google Scholar 

  18. J. Mak, S. Gross, and A. K. Bertram, Geophys. Res. Lett. 34, L10804 (2007).

    Article  Google Scholar 

  19. M. J. Tang, J. Thieser, G. Schuster, and J. N. Crowley, Atmos. Chem. Phys. 10, 2965 (2010).

    Article  CAS  Google Scholar 

  20. V. V. Zelenov, E. V. Aparina, A. V. Chudinov, and S. A. Kashtanov, Russ. J. Phys. Chem. B 4, 399 (2010).

    Article  Google Scholar 

  21. V. V. Zelenov, E. V. Aparina, S. A. Kashtanov, and E. V. Shardakova, Russ. J. Phys. Chem. B 9, 327 (2015).

    Article  CAS  Google Scholar 

  22. Yu. M. Gershenzon, V. M. Grigorirva, A. V. Ivanov, and R. G. Remorov, Faraday Discuss. 100, 83 (1995).

    Article  CAS  Google Scholar 

  23. F. Gratpanche and J.-P. Sawerysyn, J. Chim. Phys. Phys.-Chim. Biol. 96, 213 (1999).

    Article  CAS  Google Scholar 

  24. S. Lelievre, Yu. Bedjanian, N. Pouvesle, et al., Phys. Chem. Chem. Phys. 6, 1181 (2004).

    Article  CAS  Google Scholar 

  25. D. G. Aubin and J. P. D. Abbatt, J. Phys. Chem. A 111, 6263 (2007).

    Article  CAS  Google Scholar 

  26. U. Kirchner, V. Scheer, and R. Vogt, J. Phys. Chem. A 104, 8908 (2000).

    Article  CAS  Google Scholar 

  27. K. J. Laidler, Chemical Kinetics, 2nd ed. (McGraw-Hill, New York, 1965).

    Google Scholar 

  28. V. V. Zelenov, E. V. Aparina, S. A. Kashtanov, and E. V. Shardakova, Russ. J. Phys. Chem. B 10, 172 (2016).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Zelenov.

Additional information

Original Russian Text © V.V. Zelenov, E.V. Aparina, S.A. Kashtanov, E.V. Shardakova, 2017, published in Khimicheskaya Fizika, 2017, Vol. 36, No. 1, pp. 80–89.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zelenov, V.V., Aparina, E.V., Kashtanov, S.A. et al. Kinetics of NO3 uptake on a methane soot coating. Russ. J. Phys. Chem. B 11, 180–188 (2017). https://doi.org/10.1134/S1990793117010146

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793117010146

Keywords

Navigation