Skip to main content
Log in

Weak exchange interactions in biradicals: A pseudopotential for unpaired electrons and an asymptotic methods for calculating the exchange integral

  • Elementary Physicochemical Processes
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

A theory of weak exchange interactions in biradicals is developed. The basic idea is to describe the motion of two weakly bound electrons on paramagnetic centers by a two-particle Schröbinger equation that takes into account the interaction of these electrons with the closed electron shells of the biradical, described by a model local potential, and their mutual Coulomb repulsion. The model potential can be constructed using the pseudopotential method, based on results of ab initio quantum chemical calculations. The exchange interaction between the unpaired electrons on the paramagnetic centers is calculated by a generalized asymptotic method that takes into account the quasi-classical nature of the subbarrier motion of the electrons in the region between the paramagnetic centers. The developed theory makes it possible to estimate the magnitude of the exchange interaction and to determine how this interaction depends on the distance between the paramagnetic centers and their relative orientation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. N. Parmon, A. I. Kokorin, and G. M. Zhidomirov, Stable Biradicals (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  2. V. A. Tran, K. Rasmussen, G. Grampp, and A. I. Kokorin, Appl. Magn. Reson. 32, 395 (2007).

    Article  CAS  Google Scholar 

  3. Distance Measurements in Biological Systems by EPR, Ed. by L. J. Berliner, G. R. Eaton, and S. S. N. Y. Eaton (Kluwer Academic, Plenum, New York, 2000).

    Google Scholar 

  4. A. I. Kokorin, Appl. Magn. Reson. 26, 253 (2004).

    Article  CAS  Google Scholar 

  5. K. Higashiguchi, K. Yumoto, and K. Matsuda, Org. Lett. 12, 5284 (2010).

    Article  CAS  Google Scholar 

  6. E. A. Weiss, M. J. Ahrens, L. E. Sinks, et al., J. Am. Chem. Soc. 126, 5577 (2004).

    Article  CAS  Google Scholar 

  7. W. Wang, S. Wang, X. Li, et al., J. Am. Chem. Soc. 132, 8774 (2010).

    Article  CAS  Google Scholar 

  8. E. Pardo, J. Faus, M. Julve, et al., J. Am. Chem. Soc. 125, 10770 (2003).

    Article  CAS  Google Scholar 

  9. S. A. Wolf, D. D. Awschalom, R. A. Buhrman, et al., Science 294, 1488 (2001).

    Article  CAS  Google Scholar 

  10. E. Coronado, F. Palacios, and J. Veciana, Ang. Chem. Int. Ed. 42, 2570 (2003).

    Article  CAS  Google Scholar 

  11. V. Mereacre, M. Nakano, J. Gómez, et al., Chem. Eur. J. 12, 9238 (2006).

    Article  Google Scholar 

  12. S. Sanvito and A. R. Rocha, J. Comput. Theor. Nanosci. 3, 624 (2006).

    CAS  Google Scholar 

  13. EPR of Free Radicals in Solids II: Trends in Methods and Applications, Ed. by A. Lund and M. Shiotani (Springer, Dordrecht, Heidelberg, New York, London, 2013).

    Google Scholar 

  14. P. A. M. Dirac, The Principles of Quantum Mechanics (Clarendon, Oxford, 1958; Nauka, Moscow, 1979).

    Google Scholar 

  15. M. Diatkina and J. Syrkin, Acta Physicochim. U.R.S.S. 25, 23 (1946).

    Google Scholar 

  16. H. S. Jarrett, G. J. Sloan, and W. R. Vaughan, J. Chem. Phys. 25, 697 (1956).

    Article  CAS  Google Scholar 

  17. J. Grafenstein, E. Kraka, M. Filatov, and D. Cremer, Int. J. Mol. Sci. 3, 360 (2002).

    Article  Google Scholar 

  18. I. P. R. Moreira and F. Illas, Phys. Chem. Chem. Phys. 8, 1645 (2006).

    Article  CAS  Google Scholar 

  19. O. Kwon and G.-S. Chung, Bull. Korean Chem. Soc. 29, 2140 (2008).

    Article  CAS  Google Scholar 

  20. S. Nishizawa, J. Hasegawa, and K. Matsuda, Chem. Phys. Lett. 555, 187 (2013).

    Article  CAS  Google Scholar 

  21. H. M. McConnel, J. Chem. Phys. 33, 115 (1960).

    Article  Google Scholar 

  22. S. Ya. Umanskiy, E. N. Golubeva, and B. N. Plakhutin, Russ. Chem. Bull. 62, 1511 (2013).

    Article  CAS  Google Scholar 

  23. E. E. Nikitin and S. Ya. Umanskiy, Theory of Slow Atomic Collisions (Springer, Berlin, Heidelberg, 1984).

    Book  Google Scholar 

  24. J. D. Weeks, A. Hazi, and S. A. Rice, Adv. Chem. Phys. 16, 283 (1969).

    CAS  Google Scholar 

  25. P. Giannozzi, http://www.fisica.uniud.it/~giannozz

  26. D. H. Pereira, A. F. Ramos, N. H. Morgon, and R. Custodio, J. Chem. Phys. 135, 034106 (2011).

    Article  Google Scholar 

  27. A Primer in Density-Functional Theory, Ed. by C. Fiolhais, F. Nogueira, and M. A. L. Marques, Lecture Notes in Physics, Vol. 620 (Springer, Berlin, 2003).

    Google Scholar 

  28. M. A. Kozhushner and G. K. Ivanov, Chem. Phys. 170, 303 (1993).

    Article  Google Scholar 

  29. M. A. Kozhushner, K. Ya. Burshtein, G. K. Ivanov, and V. S. Posvyanskii, J. Exp. Theor. Phys. 82, 32 (1996).

    Google Scholar 

  30. L. P. Gor’kov and L. P. Pitaevskii, Sov. Phys. Dokl. 8, 788 (1963).

    Google Scholar 

  31. C. Herring and M. Flicker, Phys. Rev. A 134, 362 (1964).

    Article  CAS  Google Scholar 

  32. B. M. Smirnov and M. I. Chibisov, Sov. Phys. JETP 21, 624 (1965).

    Google Scholar 

  33. S. Ya. Umanskii and A. I. Voronin, Theor. Chim. Acta 12, 166 (1968).

    Article  CAS  Google Scholar 

  34. O. Bouty, G. Hadinger, and M. Aubert-Frecon, J. Mol. Struct. 330, 97 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ya. Umanskii.

Additional information

Original Russian Text © S.Ya. Umanskii, 2015, published in Khimicheskaya Fizika, 2015, Vol. 34, No. 1, pp. 3–10.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Umanskii, S.Y. Weak exchange interactions in biradicals: A pseudopotential for unpaired electrons and an asymptotic methods for calculating the exchange integral. Russ. J. Phys. Chem. B 9, 1–8 (2015). https://doi.org/10.1134/S1990793115010121

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793115010121

Keywords

Navigation