Skip to main content
Log in

Low-temperature ignition of methane-air mixtures under the action of nonequilibrium plasma

  • Kinetics and Mechanism of Chemical Reactions. Catalysis
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

A plasma-chemical kinetic mechanism of the low-temperature (600 < T < 1000 K) oxidation/combustion of methane under conditions of nonequilibrium plasma over a wide pressure range (P = 0.1−100 atm) is developed and verified. The mechanism is comprised of three types of elementary processes: chemical reaction of neutral atoms and molecules, primary plasma-chemical processes involving electrons, and secondary plasma-chemical processes involving atomic and molecular ions and excited species. Application of the developed mechanism to describing the plasma-assisted oxidation of methane shows that this mechanism can describe the experimental results qualitatively and quantitatively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Won-Wook Kim, J. L. Jeffrey, P. R. van Slooten, et al., J. Eng. Gas Turbin. Power 128, 40 (2006).

    Article  CAS  Google Scholar 

  2. A. Yu. Starikovskii, N. B. Anikin, I. N. Kosarev, et al., Pure Appl. Chem. 78, 1265 (2006).

    Article  CAS  Google Scholar 

  3. S. M. Starikovskaya, J. Phys. D: Appl. Phys. 39, R265 (2006).

    Article  Google Scholar 

  4. K. Miki, PHD Thesis (Georgia Inst. of Technology, 2008).

  5. Hyungrok Do, PHD Thesis (Stanford Univ., 2009).

  6. M. S. Uddi, PHD Thesis (The Ohio State Univ., 2008).

  7. A. Bourig, PHD Thesis (Univ. D’Orleans, Otto-Von-Guericke-Univ. Magdeburg, 2009).

  8. N. A. Popov, Teplofiz. Vysok. Temp. 45, 296 (2007).

    Google Scholar 

  9. G. Lou, A. Bao, M. Nishihara, et al., Proc. Combust. Inst. 31, 3327 (2007).

    Article  Google Scholar 

  10. S. L. Yao, T. Takemoto, F. Ouyang, et al., Energy Fuels 14, 459 (2000).

    Article  CAS  Google Scholar 

  11. N. Chintala, R. Meyer, A. Hicks, et al., J. Propuls. Power 21, 583 (2005).

    Article  CAS  Google Scholar 

  12. I. N. Kosarev, N. L. Aleksandrov, S. V. Kindysheva, et al., Combust. Flame 154, 569 (2008).

    Article  CAS  Google Scholar 

  13. I. N. Kosarev, N. L. Aleksandrov, S. V. Kindysheva, et al., Combust. Flame 156, 221 (2009).

    Article  CAS  Google Scholar 

  14. T. Ombrello, X. Qin, Y. Ju, et al., AIAA J. 44, 142 (2006).

    Article  Google Scholar 

  15. W. Kim, H. Do, M. G. Mungal, et al., IEEE Trans. Plasma Sci. 34, 2545 (2006).

    Article  CAS  Google Scholar 

  16. M. Uddi, N. Jiang, I. V. Adamovich, et al., in Proceedings of the 39th Plasma Dynamics and Lasers Conference (WA, Seattle, 2008), p. 3884.

    Google Scholar 

  17. A. Dutta, I. Choi, M. Uddi, et al., in Proceedings of the 47th Aerospace Sciences Meeting and Exhibit (Orlando, FL, 2009), p. 0821.

    Google Scholar 

  18. E. Mintusov, M. Nishihara, N. Jiang, et al., in Proceedings of the 39th Plasma Dynamics and Lasers Conference (WA, Seattle, 2008), p. 3899.

    Google Scholar 

  19. G. P. Smith, D. M. Golden, M. Frenklach, et al., http://www.me.berkeley.edu/gri-mech/

  20. F. H. V. Coppens, J. De Ruyck, and A. A. Konnov, Combust. Flame 149, 409 (2007).

    Article  CAS  Google Scholar 

  21. C. I. Heghes, PHD Thesis (Rupertus Carola University of Heidelberg, Germany, 2006).

  22. V. P. Zhukov, Combust. Theory Model. 13, 427 (2009).

    Article  CAS  Google Scholar 

  23. K. J. Hughes, T. Turanyi, A. Clague, et al., Int. J. Chem. Kinet. 33, 513 (2001). http://www.chem.leeds.ac.uk/Combustion/Combustion.html

    Article  CAS  Google Scholar 

  24. J. M. Simmie, http://www.nuigalway.ie.-chem-PECS-2003.pdf

  25. Y. Kihidaka, K. Sato, Y. Henmi, et al., Combust. Flame 118, 340 (1999).

    Article  Google Scholar 

  26. M. S. Skjøth-Rasmussen, P. Glarborg, M. Østberg, et al., Combust. Flame 136, 91 (2004).

    Article  Google Scholar 

  27. E. Ranzi, M. Dente, A. Goldaniga, et al., http://www.chem.polimi.it/CRECKModeling/kinetic.html

  28. C. L. Rasmussen, A. E. Rasmussen, and P. Glarborg, Combust. Flame 154, 529 (2008).

    Article  CAS  Google Scholar 

  29. V. S. Arutiunov, V. Ja. Basevitch, and V. I. Vedeneev, Russ. Chem. Rev. 65, 211 (1996).

    Google Scholar 

  30. J. Huang, P. G. Hill, W. K. Bushe, et al., Combust. Flame 136, 25 (2004). http://kbspc.mech.ubc.ca/kinetics.html

    Article  CAS  Google Scholar 

  31. J. Huang and W. K. Bushe, Combust. Flame 144, 74 (2006). http://kbspc.mech.ubc.ca/kinetics.html

    Article  CAS  Google Scholar 

  32. E. L. Petersen, D. F. Davidson, and R. K. Hanson, Combust. Flame 117, 272 (1999).

    Article  CAS  Google Scholar 

  33. E. L. Petersen, D. M. Kalitan, S. Simmons, et al., Proc. Combust. Inst. 31, 447 (2007).

    Article  Google Scholar 

  34. H. H. Carstensen and A. M. Dean, Proc. Combust. Inst. 30, 995 (2005).

    Article  Google Scholar 

  35. J. A. Miller and S. J. Klippenstein, Int. J. Chem. Kinet. 33, 654 (2001).

    Article  CAS  Google Scholar 

  36. A. Rauk, R. J. Boyd, S. L. Boyd, et al., Can. J. Chem. 81, 431 (2003).

    Article  CAS  Google Scholar 

  37. A. Joshi, X. You, T. A. Barckholtz, et al., J. Phys. Chem. A 109, 8016 (2005).

    Article  CAS  Google Scholar 

  38. A. M. Mebel, E. W. G. Diau, M. C. Lin, et al., J. Am. Chem. Soc. 118, 9759 (1996).

    Article  CAS  Google Scholar 

  39. W. Tsang and J. T. Herron, J. Phys. Chem. Ref. Data 20, 609 (1991).

    Article  CAS  Google Scholar 

  40. T. Faravelli, A. Frassoldati, and E. Ranzi, Combust. Flame 132, 188 (2003).

    Article  CAS  Google Scholar 

  41. A. A. Borisov, G. I. Skachkov, and K. Ya. Troshin, Chem. Phys. Rep. 18, 1665 (2000).

    Google Scholar 

  42. D. L. Baulch, C. T. Bowman, J. Cobos, et al., J. Phys. Chem. Ref. Data 34, 757 (2005).

    Article  CAS  Google Scholar 

  43. www.kintechlab.com/kintech-lab/publications/

  44. A. Burcat, ftp://ftp.technion.ac.il/pub/supported/aetdd/thermodynamics/

  45. R. Fernandez, K. Luther, and J. Troe, J. Phys. Chem. 110, 4442 (2006).

    Article  Google Scholar 

  46. D. L. Baulch, C. J. Cobos, and R. A. Cox, J. Phys. Chem. Ref. Data 23, 847 (1994).

    Article  CAS  Google Scholar 

  47. N. K. Srinivasan, M. C. Su, J. W. Sutherland, et al., J. Phys. Chem. A 109, 7902 (2005).

    Article  CAS  Google Scholar 

  48. R. Zhu, C. Hsu, and M. C. Lin, J. Chem. Phys. 115, 195 (2001).

    Article  CAS  Google Scholar 

  49. A. Melvin, Combust. Flame 10, 120 (1966).

    Article  CAS  Google Scholar 

  50. M. A. Deminsky, V. Chorkov, G. Belov, et al., Comput. Mater. Sci. 28, 169 (2003).

    Article  CAS  Google Scholar 

  51. Yu. S. Akishev, A. A. Deryugin, V. B. Karal’nik, et al., Plasma Phys. Rep. 20, 511 (1994).

    Google Scholar 

  52. A. M. Starik and N. S. Titova, Combust., Explos. Shock Waves 38, 253 (2002).

    Article  Google Scholar 

  53. L. G. H. Huxley and R. W. Crompton, The Diffusion and Drift of Electrons in Gases (Wiley-Interscience, New York, 1974; Mir, Moscow, 1977)

    Google Scholar 

  54. A. P. Napartovich and I. V. Kochetov, Plasma Sources Sci. Technol. 20, 025001 (2011).

    Article  Google Scholar 

  55. L. N. Krasnoperov, G. Krishtopa, and J. W. Bozzelli, J. Adv. Oxid. Technol. 2, 248 (1997).

    CAS  Google Scholar 

  56. V. G. Anicich, J. Phys. Chem. Ref. Data 22, 1469 (1993).

    Article  CAS  Google Scholar 

  57. J. A. Dean, Lange’s Handbook of Chemistry (McGraw-Hill, New York, 1999).

    Google Scholar 

  58. http://webbook.nist.gov/chemistry/form-ser.html

  59. A. A. Ionin, I. V. Kochetov, and A. P. Napartovich, J. Phys. D: Appl. Phys. 40, R25 (2007).

    Article  CAS  Google Scholar 

  60. M. Hayashi, Preprint Nat. MTG Inst. Elect. Eng. (1992), p. 748.

    Google Scholar 

  61. D. Rapp and P. Englander-Golden, J. Chem. Phys. 43, 1464 (1965).

    Article  CAS  Google Scholar 

  62. V. I. Kukulin, A. P. Osipov, and Yu. M. Chuvil’skii, Sov. Tech. Phys. 24, 883 (1979).

    Google Scholar 

  63. L. C. Pitchford, Report No. 26, JILA Information Center (1985).

  64. B. Eliasson and U. Kogelschatz, Basic Data for Modeling of Electrical Discharge in Gases: Oxygen, CH-5405 (Baden, 1986), p. 79.

    Google Scholar 

  65. I. A. Kossyi, A. Y. Kostinskii, A. A. Matveev, et al., Plasma Sources Sci. Technol. 1, 207 (1992).

    Article  CAS  Google Scholar 

  66. N. Shimura and T. Makabe, J. Phys. D: Appl. Phys. 25, 751 (1992).

    Article  CAS  Google Scholar 

  67. C. Tian and C. R. Vidal, J. Phys. B: At. Mol. Opt. Phys. 31, 895 (1998).

    Article  CAS  Google Scholar 

  68. O. Sasic, G. Malovic, A. Strinicet, et al., New J. Phys. 6, 74 (2004).

    Article  Google Scholar 

  69. A. A. Sebastian and J. M. Wadehra, J. Phys. D: Appl. Phys. 38, 1577 (2005).

    Article  CAS  Google Scholar 

  70. H. Tawara, Y. Itikawa, H. Nishimuraet, et al., Suppl. Nucl. Fusion 2, 41 (1992).

    CAS  Google Scholar 

  71. M. Hayashi, in Nonequilibrium Processes in Partially Ionized Gases, Ed. by M. Capitelli and J. N. Bardsley (Plenum Press, New York, 1990), p. 323.

  72. Y. Shishikura, K. Asano, and Y. Nakamura, J. Phys. D: Appl. Phys. 30, 1610 (1997).

    Article  CAS  Google Scholar 

  73. M.-T. Lee, M. F. Lima, A. M. Sobrino, et al., J. Phys. B: At. Mol. Opt. Phys. 35, 2437 (2002).

    Article  CAS  Google Scholar 

  74. K. I. Baluja and A. Z. Msezane, J. Phys. B: At. Mol. Opt. Phys. 34, 3157 (2001).

    Article  CAS  Google Scholar 

  75. V. E. Gal’tsev, A. V. Dem’yanov, I. V. Kochetov, et al., Preprint No. 3156, IAE im. I. V. Kurchatova (Inst. At. Energ., 1979).

  76. M. Yousfi, N. Azzi, P. Segur, et al., Electron-Molecule Collision Cross Sections and Electron Swarm Parameters in some Atmospheric Gases (N 2, O 2, H 2 O, CO 2) (Centre de Physique Atomique de Toulouse, Istituto di Elettrotecnica ed Elettronica Universita di Padova, 1987), p. 1.

    Google Scholar 

  77. J. E. Land, J. Appl. Phys. 49, 5716 (1978).

    Article  CAS  Google Scholar 

  78. S. J. B. Corrigan, J. Chem. Phys. 43, 4381 (1965).

    Article  CAS  Google Scholar 

  79. L. A. Kuznetsova, N. E. Kuz’menko, Yu. Ya. Kuzyakov, and Yu. A. Plastinin, Probabilities of Optical Transitions in Diatomic Molecules (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  80. C. Tian and C. R. Vidal, J. Chem. Phys. 109, 1704 (1998).

    Article  CAS  Google Scholar 

  81. A. I. Florescu-Mitchell and J. B. A. Mitchell, Phys. Rep. 430, 277 (2006).

    Article  CAS  Google Scholar 

  82. B. Schmidt, Nucl. Instrum. Methods Phys. Res. A 252, 579 (1986).

    Article  Google Scholar 

  83. C. S. Lakshminarasimha and J. Lucas, J. Phys. D: Appl. Phys. 10, 313 (1977).

    Article  CAS  Google Scholar 

  84. S. A. J. Al-Amin, H. N. Kucukarpaci, and J. Lucas, J. Phys. D: Appl. Phys 18, 1781 (1985).

    Article  CAS  Google Scholar 

  85. R. W. Crompton, L. G. H. Huxley, and D. J. Sutton, Proc. R. Soc. London Ser. A 218, 507 (1953).

    Article  CAS  Google Scholar 

  86. J. A. Rees and R. L. Jory, Austral. J. Phys. 17, 307 (1964).

    Article  CAS  Google Scholar 

  87. S. R. Hunter, J. G. Carter, and L. G. Christophorou, J. Appl. Phys. 60, 24 (1986).

    Article  CAS  Google Scholar 

  88. D. K. Davies, L. E. Kline, and W. E. Bies, J. Appl. Phys. 65, 3311 (1989).

    Article  CAS  Google Scholar 

  89. J. Dutton, J. Phys. Chem. Ref. Data 4, 577 (1975).

    Article  CAS  Google Scholar 

  90. R. A. Nielsen and N. E. Bradbury, Phys. Rev. 51, 69 (1937).

    Article  CAS  Google Scholar 

  91. W. Roznerski and K. Leja, J. Phys. D: Appl. Phys. 17, 279 (1984).

    Article  CAS  Google Scholar 

  92. I. Stefanovic, N. K. Bibinov, and A. A. Deryugin, Plasma Sources Sci. Technol. 10, 406 (2001).

    Article  CAS  Google Scholar 

  93. K. Schofield, J. Photochem. 9, 55 (1978).

    Article  CAS  Google Scholar 

  94. W. B. de More and J. F. Raper, J. Chem. Phys. 46, 2500 (1967).

    Article  Google Scholar 

  95. F. D. Findlay and D. E. Smelling, J. Chem. Phys. 55, 545 (1971).

    Article  CAS  Google Scholar 

  96. J. P. Singh, J. Bachar, D. W. Setser, et al., J. Chem. Phys. 89, 5347 (1985).

    Article  CAS  Google Scholar 

  97. A. A. Stepanov, V. A. Shcheglov, N. N. Yuryshev, et al., Kvant. Electron. 12, 1127 (1985).

    CAS  Google Scholar 

  98. G. Black, T. G. Slanger, G. A. St. John, et al., J. Chem. Phys. 51, 116 (1969).

    Article  CAS  Google Scholar 

  99. R. J. Donovan and D. Husain, Chem. Rev. 70, 489 (1970).

    Article  CAS  Google Scholar 

  100. J. P. Singh and D. W. Setser, J. Chem. Phys. 89, 5353 (1985).

    Article  CAS  Google Scholar 

  101. J. A. Davidson and E. A. Ogrizlo, Can. J. Chem. 52, 240 (1974).

    Google Scholar 

  102. G. G. Chernyi, S. A. Losev, S. O. Macheret, et al., in Progress in Astronautics and Aeronautics Series (AIAA Publ. Inc., 2002), p. 325.

    Google Scholar 

  103. M. A. Deminskii, A. N. Ermakov, G. A. Poskrebyshev, et al., Khim. Vys. Energ. 33(1), 44 (1999).

    Google Scholar 

  104. Electrical Discharges for Environmental Purpoceses. Fundamentals and Applications, Ed. by E. M. van Veldhuizen (Nova Science, New York, 2000).

    Google Scholar 

  105. K. L. Schmitt, D. M. Murray, and T. S. Dibble, Plasma Chem. Plasma Process. 29, 347 (2009).

    Article  CAS  Google Scholar 

  106. C. Willis and A. W. Boyd, Int. J. Rad. Phys. Chem. 3, 71 (1976).

    Article  Google Scholar 

  107. H. Matzing, in Advances in Chemical Physics, Vol. 80, Ed. by I. Prigogine and S. A. Rice (Wiley, New York, 1991).

  108. U. Fano, Phys. Rev. 92, 328 (1953).

    Article  CAS  Google Scholar 

  109. M. A. Deminsky, B. V. Potapkin, A. A. Fridman, et al., Rad. Phys. Chem. 45, 1081 (1995).

    Article  Google Scholar 

  110. H. Karasawa, E. Ibe, S. Uchida, et al., Rad. Phys. Chem. 37, 93 (1991).

    Google Scholar 

  111. M. A. McDonald, Rad. Phys. Chem. 26, 63 (1985).

    Google Scholar 

  112. F. W. Lampe, J. Am. Chem. Soc. 79, 1055 (1957).

    Article  CAS  Google Scholar 

  113. S. A. Bozhenkov, S. M. Starikovskaia, and A. Yu. Starikovskii, Combust. Flame 133, 133 (2003).

    Article  CAS  Google Scholar 

  114. I. Choi, M. Uddi, and Y. Zuzeek, AIAA J., 0688 (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Deminskii.

Additional information

Original Russian Text © M.A. Deminskii, I.V. Chernysheva, S.Ya. Umanskii, M.I. Strelkova, A.E. Baranov, I.V. Kochetov, A.P. Napartovich, T. Sommerer, S. Saddoughi, J. Herbon, B.V. Potapkin, 2013, published in Khimicheskaya Fizika, 2013, Vol. 32, No. 7, pp. 24–38.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deminskii, M.A., Chernysheva, I.V., Umanskii, S.Y. et al. Low-temperature ignition of methane-air mixtures under the action of nonequilibrium plasma. Russ. J. Phys. Chem. B 7, 410–423 (2013). https://doi.org/10.1134/S1990793113040040

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793113040040

Keywords

Navigation