Skip to main content
Log in

Numerical Modeling of the Ignition of Hydrogen–Oxygen Mixtures Under Nonequilibrium Conditions

  • HEAT AND MASS TRANSFER IN COMBUSTION PROCESSES
  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

A numerical study has been made of the intensification of combustion in hydrogen-oxygen mixtures with a low-temperature nonequilibrium plasma, when the concentration of the active particles in the mixture (atoms, radicals, ions, and excited particles) is much higher than their equilibrium concentrations. Primary emphasis has been placed on the influence of higher-than-average concentrations of electronically excited O2(a 1Δg) molecules and O( 1Δ) atoms on the acceleration of the process of ignition. Electron-beam irradiation of the fuel mixture and the action of a high-voltage nanosecond discharge on it were selected for comparison of the efficiency of different types of plasma initiation of combustion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Taguchi, H. Kobayashi, T. Kojima, A. Ueno, S. Imamura, M. Hongoh, and K. Harada, Research on hypersonic aircraft using pre-cooled turbojet engines, Acta Astronaut., 73, No. 1, 164–172 (2012).

    Article  Google Scholar 

  2. D. Cecere, A. Ingenito, E. Giacomazzi, L. Romagnosi, and C. Bruno, Hydrogen/air supersonic combustion for future hypersonic vehicles, Int. J. Hydrogen Energy, 36, No. 18, 11969–11984 (2011).

    Article  Google Scholar 

  3. S. Brieschenk, S. O’Byrne, and H. Kleine, Laser-induced plasma ignition studies in a model scramjet engine, Combust. Flame, 160, No. 1, 145–148 (2013).

    Article  Google Scholar 

  4. S. M. Starikovskaia, Plasma assisted ignition and combustion, J. Phys. D: Appl. Phys., 39, No. 16, R265–R299 (2006).

    Article  Google Scholar 

  5. A. I. Pushkarev and G. E. Remnev, Initiation of oxidation of hydrogen by a pulsed electron beam, Fiz. Goreniya Vzryva, 41, No. 3, 46–51 (2005).

    Google Scholar 

  6. T. Ombrello, S. H. Won, Y. Ju, and S. Williams, Flame propagation by plasma excitation of oxygen. Part II: Effect of O2(a 1Δ g ), Combust. Flame, 157, No. 10, 1916–1928 (2010).

  7. N. A. Popov, Influence of nonequilibrium excitation on the ignition of hydrogen–oxygen mixtures, Teplofiz. Vys. Temp., 45, No. 2, 296–315 (2007).

    Google Scholar 

  8. A. S. Sharipov and A. M. Starik, Kinetic mechanism of CO–H2 system oxidation promoted by excited singlet oxygen molecules, Combust. Flame, 159, No. 1, 16–29 (2012).

    Article  Google Scholar 

  9. N. A. Popov, Effect of singlet oxygen O2(a 1Δ g ) molecules produced in a gas discharge plasma on the ignition of hydrogen–oxygen mixtures, Plasma Sources Sci. Technol., 20, No. 045002, 1–11 (2011).

    Google Scholar 

  10. G. Ya. Gerasimov and O. P. Shatalov, Kinetic mechanism of combustion of hydrogen–oxygen mixtures, Inzh.-Fiz. Zh., 86, No. 5, 929–936 (2013).

    Google Scholar 

  11. L. B. Ibragimova and O. P. Shatalov, Rate constants of reactions for study of the combustion of oxygen–hydrogen mixtures involving excited atoms O(1D) and O(1S) and molecules O2(b 1 S), O2(a 1Δ), and OH(A2 S) (2013). http://www.chemphys.edu.ru/media/files/2013-03-12-001.pdf.

  12. N. Washida, H. Akimoto, and M. Okuda, Formation of singlet state molecular oxygen in the reaction of H + O2, J. Phys. Chem., 82, No. 1, 18–21 (1978).

    Article  Google Scholar 

  13. R. Atkinson, D. L. Baulch, R. A. Cox, J. N. Crowley, R. F. Hampson, and R. G. Hynes, Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I — gas phase reactions of O x , HO x , NO x , and SO x species, Atmos. Chem. Phys., 4, No. 6, 1461–1738 (2004).

    Article  Google Scholar 

  14. I. D. Clark and R. P. Wayne, Collisional quenching of O2(1Δ g ), Proc. Roy. Soc. London A, 314, No. 1516, 111–127 (1969).

    Article  Google Scholar 

  15. K. H. Becker, W. Groth, and U. Schurath, The quenching of metastable O2(1Δ g ) and O2(1Σ g +) molecules, Chem. Phys. Lett., 8, No. 3, 259–262 (1971).

    Article  Google Scholar 

  16. J. R. Podolske and H. S. Johnson, Rate of the resonant energy-transfer reaction between molecular oxygen O2(1Δ g ) and perhydroxyl (HOO), J. Phys. Chem., 87, No. 4, 628–634 (1983).

    Article  Google Scholar 

  17. J. T. Herron and D. S. Green, Chemical kinetics database and predictive schemes for nonthermal air plasma chemistry. Part II. Neutral species reactions, Plasma Chem. Plasma Process., 21, No. 3, 459–481 (2001).

    Article  Google Scholar 

  18. A. A. Konnov, Remaining uncertainties in the kinetic mechanism of hydrogen combustion, Combust. Flame, 152, No. 4, 507–528 (2008).

    Article  MathSciNet  Google Scholar 

  19. R. F. Heidner, C. E. Gardner, T. M. El-Sayed, G. I. Segal, and J. V. V. Kasper, Temperature dependence of O2(1Δ)+O2(1Δ) and I(2P1/2)+O2(1Δ) energy pooling, J. Chem. Phys., 74, No. 10, 5618–5627 (1981).

    Article  Google Scholar 

  20. J. Shi and J. R. Barker, Kinetic studies of the deactivation of O2(1Σ g +) and O(1D), Int. J. Chem. Kinet., 22, No. 12, 1283–1301 (1990).

    Article  Google Scholar 

  21. S. P. Sander, J. Abbatt, J. R. Barker, et al., Chemical kinetics and photochemical data for use in atmospheric studies. Evaluation No. 17, JPL Publication 10-6, Jet Propulsion Laboratory, Pasadena (2011); http://jpldataeval.jpl.nasa.gov.

  22. A. Burcat and B. Ruscic, Third Millennium Ideal Gas and Condensed Phase Thermochemical Database for Combustion with Updates from Active Thermochemical Tables, ANL-05/20 and TAE 960, Technion-IIT, Aerospace Eng. and Argonne National Laboratory, Chemistry Division (2005).

  23. V. Ya. Basevich and A. A. Belyaev, Calculation of the increase in the velocity of a hydrogen-oxygen flame on additions of singlet oxygen, Khim. Fiz., 8, No. 8, 1124–1127 (1989).

    Google Scholar 

  24. S. H. Mousavipour and V. Saheb, Theoretical study on the kinetic and mechanism of H + HO2 reaction, Bull. Chem. Soc. Jpn., 80, No. 10, 1901–1913 (2007).

    Article  Google Scholar 

  25. A. Starik and A. Sharipov, Theoretical analysis of reaction kinetics with singlet oxygen molecules, Phys. Chem. Chem. Phys., 13, No. 36, 16424–16436 (2011).

    Article  Google Scholar 

  26. S. W. Mayer and L. Schieler, Activation energies and rate constants computed for reactions of oxygen with hydrocarbons, J. Phys. Chem., 72, No. 7, 2628–2631 (1968).

    Article  Google Scholar 

  27. P. Borrell and D. S. Richards, Quenching of singlet molecular oxygen O2(a 1Δ g ) and O2(b 1 Σ g ) by H, HCl and HBr, J. Chem. Soc. Faraday Trans. 2, 85, No. 9, 1401–1411 (1989).

    Article  Google Scholar 

  28. L. T. Cupitt, G. A. Takacs, and G. P. Glass, Reaction of hydrogen atoms and O2(1Δ g ), Int. J. Chem. Kinet., 14, No. 5, 487–497 (1982).

    Article  Google Scholar 

  29. V. Ya. Basevich and V. I. Vedeneev, Rate constant of the reaction H + O2(a 1Δ g ) = OH + O, Khim. Fiz., 4, No. 8, 1102–1106 (1985).

    Google Scholar 

  30. D. I. Slovetskii, Mechanisms of Chemical Reactions in a Nonequilibrium Plasma [in Russian], Nauka, Moscow (1980).

    Google Scholar 

  31. R. J. Kee, F. M. Rupley, E. Meeks, and J. A. Miller, Chemkin- III: A Fortran Chemical Kinetics Package for the Analysis of Gas-Phase Chemical and Plasma Kinetics, Technical Report SAND96-8218, Livermore, Sandia National Laboratories (1996).

  32. V. V. Smirnov, O. M. Stel’makh, V. I. Fabelinskii, D. N. Kozlov, A. M. Starik, and N. S. Titova, On the influence of electronically excited oxygen molecules on combustion of hydrogen–oxygen mixture, J. Phys. D: Appl. Phys., 41, No. 19, 192001(6pp).

  33. A. A. Chukalovsky, K. S. Klopovsky, M. A. Liberman, Y. A. Mankelevich, N. A. Popov, O. V. Proshina, and T. V. Rakhimova, Study of singlet delta oxygen O2(1Δg) impact on H2–O2 mixture ignition in flow reactor: 2D modeling, Combust. Sci. Technol., 184, Nos. 10–11, 1768–1786 (2012).

    Article  Google Scholar 

  34. C. Willis and A. W. Boyd, Excitation in the radiation chemistry of inorganic gases, Int. J. Radiat. Phys. Chem., 8, No. 1, 71–111 (1976).

    Article  Google Scholar 

  35. B. D. Sharpee and T. G. Slanger, O(1D23P2,1,0) 630.0, 636.4, 636.4, and 639.2 nm forbidden emission line intensity ratios measured in the Terrestrial nightglow, J. Phys. Chem. A, 110, No. 21, 6707–6710 (2006).

    Article  Google Scholar 

  36. A. D. Snyder, J. Robertson, D. L. Zanders, and G. B. Skinner, Shock tube studies of fuel-air ignition characteristics, Technical report AFAPL-TR-65-93, Air Force Aero-Propulsion Laboratory, Wright-Patterson (1965).

  37. M. W. Slack, Rate coefficient for H + O2 + M = HO2 + M evaluated from shock tube measurements of induction times, Combust. Flame, 28, No. 1, 241–249 (1977).

    Article  Google Scholar 

  38. G. Y. Gerasimov, Ionizing-radiation ignition of a hydrogen–air mixture, High Energy Chem., 36, No. 6, 370–373 (2002).

    Article  MathSciNet  Google Scholar 

  39. S. A. Bozhenkov, S. M. Starikovskaia, and A. Y. Starikovskii, Nanosecond gas discharge ignition of H2- and CH4-containing mixtures, Combust. Flame, 133, Nos. 1–2, 133–146 (2003).

    Article  Google Scholar 

  40. D. Dautzenberg, Gamma-radiolysis of hydrogen–oxygen mixtures. Part I. Influences of temperature, vessel wall, pressure and added gases (N2, Ar, H2) on the reactivity of H2/O2 mixtures, Radiat. Phys. Chem., 33, No. 1, 61–67 (1989).

    Google Scholar 

  41. A. K. Pikaev, Modern Radiation Chemistry: Radiolysis of Gases and Liquids [in Russian], Nauka, Moscow (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Ya. Gerasimov.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 87, No. 5, pp. 1022–1028, September–October, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gerasimov, G.Y., Shatalov, O.P. Numerical Modeling of the Ignition of Hydrogen–Oxygen Mixtures Under Nonequilibrium Conditions. J Eng Phys Thermophy 87, 1063–1070 (2014). https://doi.org/10.1007/s10891-014-1108-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-014-1108-z

Keywords:

Navigation