Skip to main content
Log in

Rate constants of the reaction Fe + O2 + M ↔ FeO2 + M in the low- and high-pressure limits

  • Kinetics and Mechanism of Chemical Reactions. Catalysis
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The thermochemical and kinetic characteristics of the reaction Fe + O2 + M ↔ FeO2 + M are obtained based on an analysis within the framework of an RRKM model with account of the excited electronic states of the three isomeric forms of the FeO2 molecule. A new method for determining the dissociation energy and the entry energy barrier for the recombination reaction is proposed. The enthalpy of formation and Gibbs energy function of the FeO2 molecule are determined: Δ f H°(FeO2, 0) = 77 ± 10 kJ mol−1; Φ°(FeO2, T), J mol−1 K−1 = 421.4552 + 59.9779lnx − 0.0073327x −2 + 0.9598x −1 (x = 10−4 T; 250 < T < 3000 K). The best description of the available experimental data on the rate constants of reactions (I) and (−I) in the low-pressure limit in the framework of the proposed model is achieved with k 1,0(250 < T < 3000 K) = 2.8 · 1018(T/1000)−2.6exp (−3002/T) cm6 mol−2 s−1 and k −1,0(1000 < T < 3000 K) = 3.5 · 1019(T/1000)−4.0 × exp(−44371/T) cm3 mol−1 s−1. The corresponding high-pressure rate constants are k 1,∞(250 < T < 3000 K) = 1.2 · 1014exp(−2646/T) cm3 mol−1 s−1 and k -1,∞ (1000 < T < 3000 K) = 1.0 · 1015(T/1000)−1.2exp (−43657/T) s−1. It is shown that the available experimental data on the rate constants of reactions (I) and (−I) can be satisfactorily described only with consideration given to the electronically excited states of the FeO2 molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Matsuda, J. Chem. Phys. 57, 807 (1972).

    Article  CAS  Google Scholar 

  2. K. B. Kim, K. A. Masiello, and D. W. Hahn, Combust. Flame 154, 164 (2008).

    Article  CAS  Google Scholar 

  3. V. Babushok, W. Tsang, G. T. Linteris, and D. Reinelt, Combust. Flame 115, 551 (1998).

    Article  CAS  Google Scholar 

  4. C. B. Kellogg and K. K. Irikura, J. Phys. Chem. A 103, 1150 (1999).

    Article  CAS  Google Scholar 

  5. K. Par, G. T. Bae, and K. S. Shin, Bull. Korean Chem. Soc. 23, 171 (2002).

    Google Scholar 

  6. V. V. Lissianski, P. M. Maly, V. M. Zamansky, and W. C. Gardiner, Ind. Eng. Chem. Res. 40, 3287 (2001).

    Article  CAS  Google Scholar 

  7. J. M. C. Plane, Chem. Rev. 103, 4963 (2003).

    Article  CAS  Google Scholar 

  8. I. Cherchneff and E. Dwek, Astrophys. J. 713, 1 (2010).

    Article  CAS  Google Scholar 

  9. I. S. Zaslonko and V. N. Smirnov, Fiz. Goreniya Vzryva 16, 143 (1980).

    CAS  Google Scholar 

  10. U. S. Akhmadov, I. S. Zaslonko, and V. N. Smirnov, Kinet. Katal. 29, 291 (1988).

    CAS  Google Scholar 

  11. S. A. Mitchell and P. A. Hackett, J. Chem. Phys. 93, 7822 (1990).

    Article  CAS  Google Scholar 

  12. M. Helmer and J. M. C. Plane, J. Chem. Soc., Faraday Trans. 90, 395 (1994).

    Article  CAS  Google Scholar 

  13. A. Giesen, D. Woiki, J. Herzler, and P. Roth, in Proceedings of the 29th International Symposium on Combustion (The Combust. Inst., Pittsburgh, 2002), p. 1345.

    Google Scholar 

  14. V. N. Smirnov, Kinet. Catal. 39, 844 (1998).

    CAS  Google Scholar 

  15. Y. Gong, M. Zhou, and L. Andrews, Chem. Rev. 109, 6765 (2009).

    Article  CAS  Google Scholar 

  16. G. V. Chertihin, W. Saffel, J. T. Yustein, et al., J. Phys. Chem. 100, 5261 (1996).

    Article  CAS  Google Scholar 

  17. Z. Cao, M. Duran, and M. Sola, Chem. Phys. Lett. 274, 411 (1997).

    Article  CAS  Google Scholar 

  18. A. T. Garcia-Sosa and M. Castro, Int. J. Quantum Chem. 80, 307 (2000).

    Article  CAS  Google Scholar 

  19. G. L. Gutsev, B. K. Rao, and P. Jena, J. Phys. Chem. A 104, 11961 (2000).

    Article  CAS  Google Scholar 

  20. C. E. Brown, S. A. Mitchell, and P. A. Hackett, J. Phys. Chem. 95, 1062 (1991).

    Article  CAS  Google Scholar 

  21. J. Troe, J. Chem. Phys. 66, 4758 (1977).

    Article  CAS  Google Scholar 

  22. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Nauka, Moscow, 1995; Pergamon, Oxford, 1980).

    Google Scholar 

  23. J. M. Parnis, S. A. Mitchell, and P. A. Hackett, J. Phys. Chem. 94, 8152 (1990).

    Article  CAS  Google Scholar 

  24. Thermal Properties of Individual Substances, Ed. by V. P. Glushko (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  25. Thermal Properties of Individual Substances. Zn, Cu, Fe, Co, Ni, Mn, Cr, V, Ti, Sc and their Compounds, Electronic Manual. www.chem.msu.su/rus/tsiv/welcome.html

  26. F. Grein, Int. J. Quantum Chem. 109, 549 (2009).

    Article  CAS  Google Scholar 

  27. K. Luther and J. Troe, in Proceedings of the 17th International Symposium on Combustion (The Combust. Inst., Pittsburgh, 1978), p. 535.

    Google Scholar 

  28. C. J. Cobos and J. Troe, J. Chem. Phys. 83, 1010 (1985).

    Article  CAS  Google Scholar 

  29. A. S. Narayan, A. G. Slavejkov, and A. Fontjin, in Proceedings of the 24th International Symposium on Combustion (The Combust. Inst., Pittsburgh, 1992), p. 727.

    Google Scholar 

  30. V. N. Smirnov, Kinet. Katal. 34, 783 (1993).

    CAS  Google Scholar 

  31. U. S. Akhmadov, I. S. Zaslonko, and V. N. Smirnov, Kinet. Katal. 29, 291 (1988).

    CAS  Google Scholar 

  32. M. L. Campbell, R. E. McClean, and J. S. S. Harter, Chem. Phys. Lett. 235, 497 (1995).

    Article  CAS  Google Scholar 

  33. L. Lian, S. A. Mitchell, and D. M. Rayner, J. Phys. Chem. 98, 11637 (1994).

    Article  CAS  Google Scholar 

  34. V. N. Smirnov, I. S. Zaslonko, and A. M. Vashchenko, Kinet. Katal. 27, 732 (1986).

    CAS  Google Scholar 

  35. N. L. Garland and H. H. Nelson, Chem. Phys. Lett. 191, 269 (1992).

    Article  CAS  Google Scholar 

  36. NIST Chemical Kinetics Database. Standard Reference Database 17, Ver. 7.0. http://kinetics.nist.gov/kinetics/index.jsp

  37. D. L. Hildenbrand, Chem. Phys. Lett. 34, 352 (1975).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Smirnov.

Additional information

Original Russian Text © V.N. Smirnov, 2013, published in Khimicheskaya Fizika, 2013, Vol. 32, No. 3, pp. 15–24.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smirnov, V.N. Rate constants of the reaction Fe + O2 + M ↔ FeO2 + M in the low- and high-pressure limits. Russ. J. Phys. Chem. B 7, 105–112 (2013). https://doi.org/10.1134/S199079311302005X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199079311302005X

Keywords

Navigation