Skip to main content
Log in

Perturbative analysis of the probability of the nonthermal transfer of an electron

  • Elementary Physicochemical Processes
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The probability of the nonthermal transfer of an electron of an excited donor-acceptor complexes was calculated from the electron coupling parameter within the framework of time-dependent perturbation theory. Using the analysis of the two first corrections of the perturbation theory series for the standard spinboson model with the Debye spectral density of thermostat oscillators as a basis, we revealed the structure of higher corrections. This allowed us to sum up the series and obtain a new analytical expression distinct from the widely used Padé-approximation for the probability of the nonthermal transfer of an electron. The stochastic approach was shown to allow overestimation of the probability of nonthermal electron transitions by 40.0% in the solvent-controlled regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. T. Mazurenko and N. G. Bakhshiev, Opt. Spektrosk. 28, 4908 (1970).

    Google Scholar 

  2. J. Najbar, R. C. Dorfman, and M. D. Fayer, J. Chem. Phys. 94, 1081 (1991).

    Article  CAS  Google Scholar 

  3. M. Tachiya and S. Murata, J. Am. Chem. Soc. 116, 2434 (1994).

    Article  CAS  Google Scholar 

  4. R. D. Colson, D. G. Evans, and A. Nitzan, J. Chem. Phys. 101, 436 (1994).

    Article  Google Scholar 

  5. O. Nicolet and E. Vauthey, J. Phys. Chem. A 106, 5553 (2002).

    Article  CAS  Google Scholar 

  6. H. Toriedo, K. Nozaki, A. Yoshimura, and T. Ohno, J. Phys. Chem. A 108, 4819 (2004).

    Article  Google Scholar 

  7. O. Nicolet, N. Banerji, S. Pages, and E. Vauthey, J. Phys. Chem. A 109, 8236 (2005).

    Article  CAS  Google Scholar 

  8. E. Vauthey, J. Photochem. Photobiol., A 179, 1 (2006).

    Article  CAS  Google Scholar 

  9. S. V. Feskov, V. N. Ionkin, A. I. Ivanov, H. Hagemann, and E. Vauthey, J. Phys. Chem. A 112, 594 (2008).

    Article  CAS  Google Scholar 

  10. A. I. Ivanov and V. A. Mikhailova, Usp. Khim. 79, 1139 (2010).

    Google Scholar 

  11. T. Asahi and N. Mataga, J. Phys. Chem. 93, 6575 (1989).

    Article  CAS  Google Scholar 

  12. I. R. Gould, R. H. Young, R. E. Moody, and S. Farid, J. Phys. Chem. 95, 2068 (1991).

    Article  CAS  Google Scholar 

  13. I. R. Gould, D. Noukakis, L. Gomez-Jahn, J. L. Goodman, and S. Farid, J. Am. Chem. Soc. 115, 4405 (1993).

    Article  CAS  Google Scholar 

  14. K. Tominaga, D. A. V. Kliner, A. E. Johnson, N. E. Levinger, and P. Barbara, J. Chem. Phys. 98, 1228 (1993).

    Article  CAS  Google Scholar 

  15. S. M. Hubig, T. M. Bockman, and J. K. Kochi, J. Am. Chem. Soc. 118, 3842 (1996).

    Article  CAS  Google Scholar 

  16. I. V. Rubtsov, H. Shirota, and K. J. Yoshihara, Phys. Chem. A 103, 1801 (1999).

    Article  CAS  Google Scholar 

  17. W. Jarzeba, S. Pommeret, and J.-C. Mialocq, Chem. Phys. Lett. 333, 419 (2001).

    Article  CAS  Google Scholar 

  18. S. A. Kovalenko, J. L. P. Lustres, N. P. Ernsting, and W. Rettig, J. Phys. Chem. A 107, 10228 (2003).

    Article  CAS  Google Scholar 

  19. B. Bagchi, Ann. Rev. Phys. Chem. 40, 115 (1989).

    Article  CAS  Google Scholar 

  20. M. Cho and R. J. Silbey, J. Chem. Phys. 103, 595 (1995).

    Article  CAS  Google Scholar 

  21. W. Domcke and G. Stock, Adv. Chem. Phys. 100, 1 (1997).

    Article  CAS  Google Scholar 

  22. A. I. Ivanov, V. A. Mikhailova, and S. V. Fes’kov, Russ. J. Phys. Chem. A 71, 1346 (1997).

    Google Scholar 

  23. J. M. Jean, J. Phys. Chem. A 102, 7549 (1998).

    Article  CAS  Google Scholar 

  24. K. Ando and H. Sumi, J. Phys. Chem. B 102, 10991 (1998).

    Article  CAS  Google Scholar 

  25. A. I. Ivanov and V. V. Potovoi, Chem. Phys. 247, 245 (1999).

    Article  CAS  Google Scholar 

  26. A. I. Ivanov, F. N. Belikeev, R. G. Fedunov, and E. Vauthey, Chem. Phys. Lett. 372, 73 (2003).

    Article  CAS  Google Scholar 

  27. R. G. Fedunov, S. V. Feskov, A. I. Ivanov, et al., J. Chem. Phys. 121, 3643 (2004).

    Article  CAS  Google Scholar 

  28. A. I. Ivanov, R. G. Fedunov, and S. V. Fes’kov, Russ. J. Phys. Chem. A 78, 1270 (2004).

    Google Scholar 

  29. V. A. Mikhailova, A. I. Ivanov, and E. Vauthey, J. Chem. Phys. 121, 6463 (2004).

    Article  CAS  Google Scholar 

  30. S. V. Feskov, A. I. Ivanov, and A. I. Burshtein, J. Chem. Phys. 122, 124509 (2005).

    Article  CAS  Google Scholar 

  31. H. Kramers, Physica 7, 284 (1940).

    Article  CAS  Google Scholar 

  32. H. Frauenfelder and P. G. Wolynes, Science 229, 337 (1985).

    Article  CAS  Google Scholar 

  33. L. Landau, Z. Phys. Sov. 2, 1932 (1932).

    Google Scholar 

  34. C. Zener, Proc. R. Soc. Ser. A 137, 696 (1932).

    Article  Google Scholar 

  35. E. G. C. Stueckelberg, Helv. Phys. Acta 5, 369 (1932).

    Google Scholar 

  36. L. D. Zusman, Chem. Phys. 49, 295 (1980).

    Article  CAS  Google Scholar 

  37. B. I. Yakobson and A. I. Burshtein, Chem. Phys. 49, 385 (1980).

    Article  CAS  Google Scholar 

  38. D. F. Calef and P. G. Wolynes, J. Phys. Chem. 87, 3387 (1983).

    Article  CAS  Google Scholar 

  39. J. T. Hynes, J. Phys. Chem. 90, 3701 (1986).

    Article  CAS  Google Scholar 

  40. A. Garg, J. N. Onuchic, and V. Ambegoakar, J. Chem. Phys. 83, 4491 (1985).

    Article  CAS  Google Scholar 

  41. A. J. Leggett, S. Chakravarty, A. T. Dorsey, et al., Rev. Mod. Phys. 59, 1 (1987).

    Article  CAS  Google Scholar 

  42. M.-L. Zhang, S. Zhang, and E. Pollak, J. Chem. Phys. 119, 11864 (2003).

    Article  CAS  Google Scholar 

  43. J. Cao, J. Chem. Phys. 112, 6719 (2000).

    Article  CAS  Google Scholar 

  44. M. Sparpaglione and S. Mukamel, J. Chem. Phys. 88, 3263 (1988).

    Article  CAS  Google Scholar 

  45. H. Grabert, Projection Operator Techniques in Nonequilibrium Statictical Mechanics (Springer, Berlin, 1982).

    Google Scholar 

  46. H. Frohlich, Theory of Dielectrics (Clarendon, Oxford, 1958).

    Google Scholar 

  47. Electron Transfer: From isolated Molecules to Biomolecules, Ed. by J. Jortner and M. Bixon, Adv. Chem. Phys. 106–107, 734 (1999).

  48. D. V. Dodin, A. I. Ivanov, and A. I. Burshtein, J. Phys. Chem. A 112, 889 (2008).

    Article  CAS  Google Scholar 

  49. E. E. Nikitin, The Theory of Elementary Atomic-Molecular Processes in Gases (Khimiya, Moscow, 1970) [in Russian].

    Google Scholar 

  50. A. V. Barzykin, P. A. Frantsuzov, K. Seki, and M. Tachiya, Adv. Chem. Phys. 123, 511 (2002).

    Article  CAS  Google Scholar 

  51. P. A. Frantsuzov and M. Tachiya, J. Chem. Phys. 112, 4216 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Mikhailova.

Additional information

Original Russian Text © V.A. Mikhailova, A.I. Ivanov, 2012, published in Khimicheskaya Fizika, 2012, Vol. 31, No. 1, pp. 7–17.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mikhailova, V.A., Ivanov, A.I. Perturbative analysis of the probability of the nonthermal transfer of an electron. Russ. J. Phys. Chem. B 6, 5–14 (2012). https://doi.org/10.1134/S1990793111060248

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793111060248

Keywords

Navigation