Skip to main content
Log in

L-Asparaginases of Extremophilic Microorganisms in Biomedicine

  • Published:
Biochemistry (Moscow), Supplement Series B: Biomedical Chemistry Aims and scope Submit manuscript

Abstract

L-asparaginase is widely used in the treatment of acute lymphoblastic leukemia and several other lymphoproliferative diseases. In addition to its biomedical application, L-asparaginase is used in food industry to reduce the level of acrylamide, which is considered as neurotoxic and carcinogenic agent to humans, and in biosensors for determination of the L-asparagine level in biochemistry and food chemistry. In view of great significance of L-asparaginases in different fields, disadvantages of commercial enzymes, and the wide distribution of the enzyme in nature there is a need for novel L-asparaginases from new sources. In this context, extremophilic microorganisms exhibiting unique physiological properties such as thermal stability, adaptation to extreme cold conditions, salt, and pH tolerance attract much interest as one of the most valuable sources for novel L-asparaginases. The results of of structural, functional studies, physico-chemical properties, kinetic characteristics, and stability of L-asparaginases from extremophilic microorganisms suggest the prospect of using these enzymes in biology and medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Solomon, B., Parihar, N., Ayodele, L., and Hughes, M., J. Blood Disord. Transfus., 2017, vol. 8, 24.

    Google Scholar 

  2. Brumano, L.P., da Silva, F.V.S., Costa-Silva, T.A., Apolinario, A.C., Santos, J.H.P.M., Kleingesinds, E.K., Monteiro, G., Rangel-Yagui, C.O., Benyahia, B., and Junior, A.P., Bioeng. Biotechnol., 2018, vol. 6, pp. 1−22.

    Article  Google Scholar 

  3. Avramis, V.I. and Tiwari, P.N., Int. J. Nanomedicine, 2006, vol. 1, no. 3, pp. 241−254.

    CAS  Google Scholar 

  4. Verma, N., Kumar, K., Kaur, G., and Anand, S., Crit. Rev. Biotechnol., 2007, vol. 27, no. 1, pp. 45−62. https://doi.org/10.1080/07388550601173926

  5. Kumar, K., Kaur, J., Walia, S., Pathak, T., and Aggarwal, D., Leuk. Lymphoma, 2014, vol. 55, no. 2, pp. 256−262.

    Article  CAS  Google Scholar 

  6. Abakumova, O.Yu., Podobed, O.V., Karalkin, P.A., Kondakova, L.I., and Sokolov, N.N., Biomeditsinskaya Khimiya, 2013, vol. 59, no. 5, pp. 498−513.

    Article  CAS  Google Scholar 

  7. Sokolov, N.N., Eldarov, M.A., Pokrovskaya, M.V., Aleksandrova, S.S., Abakumova, O.Yu., Podobed, O.V., Melik-Nubarov, N.S., Kudryashova, E.V., Gri-shin, D.V., and Archakov, A.I., Biomeditsinskaya Khimiya, 2015, vol. 61, no. 3, pp. 312−324.

    Article  CAS  Google Scholar 

  8. Avramis, V.I., Blood, 2014, vol. 123, no. 23, pp. 3532−3533. https://doi.org/10.1182/blood-2014-04-565523

    Article  CAS  Google Scholar 

  9. Matsumoto, Y., Nomura, K., Kanda-Akano, Y., Fujita, Y., Nakao, M., Ueda, K., Horiike, S., Yokota, S., Kusuzaki, K., Kitoh, T., Watanabe, A., and Taniwaki, M., Leuk. Lymphoma, 2003, vol. 44, no. 5, pp. 879−882. https://doi.org/10.1080/1042819031000067873

    Article  CAS  Google Scholar 

  10. Müller, H.J. and Boos J., Crit. Rev. Oncol. Hematol., 1998, vol. 28, no. 2, pp. 97−113.

    Article  Google Scholar 

  11. Hill, J.M., Roberts, J., Loeb, E., Khan, A., Maclellan, A., and Hill, R.W., J. Am. Med. Assoc., 1967, vol. 202, vol. 9, pp. 82−88.

  12. Duval, M., Suciu, S., Ferster, A., Rialland, X., Nelken, B., Lutz, P., Benoit, Y., Robert, A., Manel, A.M., Vilmer, E., Otten, J., and Philippe, N., Blood, 2002, vol. 99, pp. 2734−2739.

    Article  CAS  Google Scholar 

  13. Wrobel, G., Dobaczewski, G., Kazanowska, B., Bogusławska-Jaworska, J., Balwierz, W., Balcerska, A., Bubała, H., Dluzniewska, A., Kołecki, P., Kowalczyk, J., Kurylak, A., Maciejka-Kapuscinska, L., Matysiak, M., Rokicka-Milewska, R., Sońta-Jakimczyk, D., Sopyło, B., Stefaniak, M.J., Stefańska, K., Stańczak, E., and Wysocki, M., Med. Wieku. Rozw., 2000, vol. 4, pp. 67−72.

    CAS  Google Scholar 

  14. Kobrinsky, N.L, Sposto, R., Shah, N.R., Anderson, J.R., DeLaat, C., Morse, M., Warkentin, P., Gilchrist, G.S., Cohen, M.D., Shina, D., and Meadows, A.T., J. Clin. Oncol., 2001, vol. 9, no. 9, pp. 2390−2396.

    Article  Google Scholar 

  15. Agrawal, N.R., Bukowski, R.M., Rybicki, L.A., Kurtzberg, J., Cohen, L.J., and Hussein, M.A., Cancer, 2003, vol. 98, no. 1, pp. 94−99. https://doi.org/10.1002/cncr.11480

    Article  CAS  Google Scholar 

  16. Miller, A.J., Palmer, A.S., Eliska, O., Eliskova, M., DeBoer, A., and Greene, R., Lymphology, 1996, vol. 29, pp. 158−165.

    CAS  Google Scholar 

  17. Cedar, H. and Schwartz, J.H., J. Biol. Chem., 1967, vol. 242, vol. 16, pp. 3753−3755.

  18. Ho, P.P., Milikin, E.B., Bobbitt, J.L. Grinnan, E.L., Burck, P.J., Frank, B.H., Boeck, L.D., and Squires, R.W., J. Biol. Chem., 1970, vol. 245, no. 14, pp. 3708−3715.

    CAS  Google Scholar 

  19. Sanches, M., Krauchenco, S., and Polikarpov, I., Curr. Chem. Biol., 2012, vol. 1, no. 1, pp. 75−86.

    Google Scholar 

  20. Nguyen, H.A., Su, Y., and Lavie, A., Biochemistry, 2016, vol. 55, no. 8, pp. 246−253. https://doi.org/10.1021/acs.biochem.5b01351

    Article  CAS  Google Scholar 

  21. Lazarus, H., McCoy, T.A., Farber, S., Barell, E.F., and Foley, G.E., Exp. Cell Res., 1969, vol. 57, no. 1, pp. 134−138.

    Article  CAS  Google Scholar 

  22. Horowitz, B., Madras, B.K., Meister, A., Old, L.J., Boyse, E.A., and Stockert, E., Science, 1968, vol. 160, no. 3827, pp. 533−535. https://doi.org/10.1126/science.160.3827.533

    Article  CAS  Google Scholar 

  23. Story, M.D., Voehringer, D.W., Stephens, L.C., and Meyn, R.E., Cancer Chemother. Pharmacol., 1993, vol. 32, no. 2, pp. 129−133. https://doi.org/10.1007/bf00685615

    Article  CAS  Google Scholar 

  24. Ueno, T., Ohtawa, K., Mitsui, K., Kodera, Y., Hiroto, M., Matsushima, A., Inada, Y., and Nishimura, H., Leukemia, 1997, vol. 11, no. 11, pp. 1858−1861. https://doi.org/10.1038/sj.leu.2400834

    Article  CAS  Google Scholar 

  25. Ravi, A. and Gurunathan, B., Food Technol. Biotechnol., 2018, vol. 56, no. 1, pp. 51−57. https://doi.org/10.17113/ftb.56.01.18.5422

    Article  CAS  Google Scholar 

  26. Baskar, G., Subanjalin Joy, S., and Aiswarya, R., Int. J. Mod. Sci. Technol., 2016, vol. 609, no. 10, pp. 224−229.

    Google Scholar 

  27. Aiswarya, R. and Baskar, G., Int. J. Food Sci. Technol., 2018, vol. 53, pp. 491−498.

    Article  CAS  Google Scholar 

  28. Torang, A. and Alemzadesh, I., Int. J. Eng., 2016, vol. 29, no. 7, pp. 879−886.

    CAS  Google Scholar 

  29. Baskar, G. and Aiswarya, R., J. Sci. Food Agric., 2018, vol. 98, no. 12, pp. 4385−4394. https://doi.org/10.1002/jsfa.9013

    Article  CAS  Google Scholar 

  30. Keramat, J., LeBail, A., Prost, C., and Jafari, M., Food Bioprocess Technol., 2011, vol. 4, no. 4, pp. 530−543.

    Article  CAS  Google Scholar 

  31. Gurunathan, B. and Sahadevan, R., Int. J. Chem. React. Eng., 2011, vol. 7, pp. 1542−1580.

    Google Scholar 

  32. Abboudi, M., Al-Bachir, M., Koudsi, Y., and Jouhara, H., Int. J. Food Prop., 2016, vol. 19, no. 7, pp. 1447−1454.

    Article  CAS  Google Scholar 

  33. Sharma, D., Singh, K., Singh, K., and Mishra, A., Curr. Protein Pept. Sci., 2019, vol. 20, no. 5, pp. 452−464. https://doi.org/10.2174/1389203720666181114111035

    Article  CAS  Google Scholar 

  34. Verma, N., Bansal, M., and Kumar, S., Adv. Appl. Sci. Res., 2012, vol. 3, no. 2, pp. 809−814.

    CAS  Google Scholar 

  35. Verma, N., Kumar, K., Kaur, G., and Anand, S., Artif. Cells Blood Substitutes,Biotechnol., 2007, vol. 35, no. 4, pp. 449−456.

    CAS  Google Scholar 

  36. Hurst, P.L., Boulton, G., and Lill, R.E., Food Chem., 1998, vol. 61, no. 3, pp. 381−384.

    Article  CAS  Google Scholar 

  37. Izco, J.M., Torre, P., and Barcina, Y., Food Control., 2000, vol. 11, no. 1, pp. 7−11.

    Article  CAS  Google Scholar 

  38. Sharma, S.K., Sehgal, N., and Kumar, A., Curr. Appl. Phys., 2003, vol. 3, nos. 2−3, pp. 307−316.

    Article  Google Scholar 

  39. Kumar, K., Kataria, M., and Verma, N., Artif. Cells Nanomedicine Biotechnol., 2013, vol. 41, no. 3, pp. 184−188.

    Article  CAS  Google Scholar 

  40. El-Naggar, N.E.A., El-Ewasy, S.M., and El-Shweihy, N.M., Int. J. Pharmacol., 2014, vol. 10, no. 4, pp. 182−199.

    Article  CAS  Google Scholar 

  41. Wang, B., Relling, M.V., Storm, M.C., Woo, M.H., Ribeiro, R., Pui, C.H., and Hak, L., J. Leukemia, 2003, vol. 7, no. 8, pp. 1583−1588. https://doi.org/10.1038/sj.leu.2403011

    Article  CAS  Google Scholar 

  42. Plourde, P.V., Jeha, S., Hijiya, N., Keller, F.G., Silverman, L.B., Rheingold, S.R., Dreyer, Z.E., Dahl, G.V., Mercedes, T., Lai, C., and Corn, T., Pediatr. Blood Cancer, 2014, vol. 61, no. 7, pp. 1232–1238. https://doi.org/10.1002/pbc.24938

    Article  CAS  Google Scholar 

  43. Hijiya, N. and van der Sluis, I.M., Leuk. Lymphoma, 2016, vol. 57, no. 4, pp. 748–757. https://doi.org/10.3109/10428194.2015.1101098

    Article  CAS  Google Scholar 

  44. Grace, R.F., Dahlberg, S.E., Neuberg, D., Sallan, S.E., Connors, J.M., Neufeld, E.J., DeAngelo, D.J., and Silverman, L.B., Br. J. Haematol., 2011, vol. 152, no. 4, pp. 452–459. https://doi.org/10.1111/j.1365-2141.2010.08524.x

    Article  Google Scholar 

  45. Storti, E. and Quaglino, D., Recent Results Cancer Res., 1970, vol. 33, pp. 344–349. https://doi.org/10.1007/978-3-642-99984-0.40

    Article  CAS  Google Scholar 

  46. Guo, J., Coker, A.R., Wood, S.P., Cooper, J.B., Chohan, S.M., Rashid, N., and Akhtar, M., Acta Crystallogr. Sect. D Struct. Biol., 2017, vol. 73, no. 11, pp. 889–895.

    Article  CAS  Google Scholar 

  47. Chohan, S.M. and Rashid, N., J. Biosci. Bioeng., 2013, vol. 116, no. 4, pp. 438–443. https://doi.org/10.1016/j.jbiosc.2013.04.005

    Article  CAS  Google Scholar 

  48. Zuo, S., Xue, D., Zhang, T., Jiang, B., and Mu, W., J. Mol. Catal. B Enzym., 2014, vol. 109, pp. 122–129.

    Article  CAS  Google Scholar 

  49. Li, X., Zhang, X., Xu, S., Zhang, H.H., Xu, M., Yang, T., Wang, L., Qian, H., Zhang, H., Fang, H., Osire, T., Rao, Z., and Yang, S., Sci. Rep., 2018, vol. 8, no. 1, 7915.

    Article  CAS  Google Scholar 

  50. Bansal, S., Srivastava, A., Mukherjee, G., Pandey, R., Verma, A.K., Mishra, P., and Kundu, B., FASEB J., vol. 26, no. 3, pp. 1161–1171.

  51. Garg, D.K. and Kundu, B., Arch. Biochem. Biophys., 2017, vol. 622, pp. 36–46. https://doi.org/10.1016/j.abb.2017.04.010

    Article  CAS  Google Scholar 

  52. Bansal, S., Gnaneswari, D., Mishra, P., and Kundu, B., Biochemistry (Moscow), 2010, vol. 75, no. 3, pp. 375–381. doi: 1134/s0006297910030144

  53. Garg, D.K., Tomar, R., Dhoke, R.R., Srivastava, A., and Kundu, B., Extremophiles, 2015, vol. 19, no. 3, pp. 681–691. https://doi.org/10.1007/s00792-015-0748-z

    Article  CAS  Google Scholar 

  54. Yao, M., Yasutake, Y., Morita, H., and Tanaka, I., Acta Crystallogr. D. Biol. Crystallogr., 2005, vol. 61, pt 3, pp. 294–301. https://doi.org/10.1107/S0907444904032950

    Article  CAS  Google Scholar 

  55. Li, J., Wang, J., and Bachas, L.G., Anal. Chem., 2002, vol. 74, no. 14, pp. 3336–3341. https://doi.org/10.1021/ac015653s

  56. Chohan, S.M., Rashid, N., Sajed, M., and Imanaka, T., Folia Microbiol. (Praha), 2019, vol. 64, no. 3, pp. 313–320.

    Article  CAS  Google Scholar 

  57. Fiala, G. and Stetter, K.O., Arch. Microbiol., 1986, vol. 145, no. 1, pp. 56–61.

    Article  CAS  Google Scholar 

  58. Hatanaka, T., Usuki, H., Arima, J., Uesugi, Y., Yamamoto, Y., Kumagai, Y., Yamasato, A., and Mukaihara, T., Appl. Biochem. Biotechnol., 2011, vol. 163, no. 7, pp. 836–844.

    Article  CAS  Google Scholar 

  59. Pritsa, A.A. and Kyriakidis, D.A., Mol. Cell. Biochem., 2001, vol. 216, nos. 1–2, pp. 93–101.

    Article  CAS  Google Scholar 

  60. Tiwari, A.K., Rao, J.V., Doriya, K., Kumar, D.S., Qureshi, A., and Ashok, A., Sci. Rep., 2019, vol. 9, no. 11, p. 423. https://doi.org/10.1038/s41598-018-38094-1

    Article  CAS  Google Scholar 

  61. Onishi, Y., Yano, S., Thongsanit, J., Takagi, K., Yoshimune, K., and Wakayama, M., Ann. Microbiol., 2011, vol. 61, no. 3, pp. 517–524.

    Article  CAS  Google Scholar 

  62. Safary, A., Moniri, R., Hamzeh-Mivehroud, M., and Dastmalchi, S., BioImpacts, 2019, vol. 9, no. 1, pp. 15–23. https://doi.org/10.15171/bi.2019.03

    Article  CAS  Google Scholar 

  63. Shirazian, P., Asad, S., and Amoozegar, M.A., EXCLI J., 2016, vol. 15, pp. 268–279.

    Google Scholar 

  64. Ebrahiminezhad, A., Rasoul-Amini, S., and Ghasemi, Y., Indian J. Microbiol., 2011, vol. 51, no. 3, pp. 307–311.

    Article  CAS  Google Scholar 

  65. Han, S., Jung, J., and Park, W., J. Microbiol. Biotechnol., 2014, vol. 24, no. 8, pp. 1096–1104.

    Article  CAS  Google Scholar 

  66. Zuo, S., Zhang, T., Jiang, B., and Mu, W., Extremophiles, 2015, vol. 19, no. 4, pp. 841–851. https://doi.org/10.1007/s00792-015-0763-0

    Article  CAS  Google Scholar 

  67. Kotzia, G.A. and Labrou, N.E., J. Biotechnol., 2007, vol. 127, no. 4, pp. 657–669.

    Article  CAS  Google Scholar 

  68. Angelica, M.E., Evangelista-Martinez, Z., Gonzalez-Mondragyn, E.G., Calderon-Flores, A., Arreguin, R., Perez-Rueda, E., and Huerta-Saquero, A., J. Microbiol. Biotechnol., 2012, vol. 22, no. 3, pp. 292–300.

    Article  CAS  Google Scholar 

  69. Swain, A.L., Jaskólski, M., Housset, D., Rao, J.K., and Wlodawer, A., Proc. Natl. Acad. Sci. USA, 1993, vol. 90, no. 4, pp. 1474–1478.

    Article  CAS  Google Scholar 

  70. Guo, J., Coker, A.R., Wood, S.P., Cooper, J.B., Chohan, S.M., Rashid, N., and Akhtar, M., Acta Crystallogr. D Struct. Biol., 2017, vol. 73, pt 11, pp. 889–895. https://doi.org/10.1107/S2059798317014711

    Article  CAS  Google Scholar 

  71. Michalska, K. and Jaskolski, M., Acta Biochim. Pol., 2006, vol. 53, no. 4, pp. 627–640.

    Article  CAS  Google Scholar 

  72. Khushoo, A., Pal, Y., Singh, B.N., and Mukherjee, K.J., Protein Expr. Purif., 2004, vol. 38, no. 1, pp. 29–36.

    Article  CAS  Google Scholar 

  73. Pourhossein, M. and Korbekandi, H., Adv. Biomed. Res., 2014, vol. 119, no. 4, pp. 309–323.

    Google Scholar 

  74. Sokolov, N.N., Eldarov, M.A., Sidoruk, K.V., Zhgun, A.A., Borisova, A.A., Alexandrova, S.S., Omelianyuk, N.M., Bogush, V.G., Krasotkina, Yu.V., Gervaziev, Yu.V., Pokrovskaya, M.V., Sokov, B.N., Berezov, T.T., Scriabin, K.G., and Archakov, A.I., Molecularnaya Meditsina, 2005, vol. 3, no. 1, pp. 45–52.

    Google Scholar 

  75. Cappelletti, D., Chiarelli, L.R., Pasquetto, M.V., Stivala, S., Valentini, G., and Scotti, C., Biochem. Biophys. Res. Commun., 2008, vol. 377, no. 4, pp. 1222–1226.

    Article  CAS  Google Scholar 

  76. Kumar, S., Veeranki, V.D., and Pakshirajan, K., Appl. Biochem. Biotechnol., 2011, vol. 163, no. 3, pp. 327–337.

    Article  CAS  Google Scholar 

  77. Aung, H.P., Bocola, M., Schleper, S., and Röhm, K.H., Biochim. Biophys. Acta, Protein Struct. Mol. Enzymol., 2000, vol. 1481, no. 2, pp. 349–359.

    Article  CAS  Google Scholar 

  78. Kozak, M., Borek, D., Janowski, R., and Jaskólski, M., Acta Crystallogr. Sect. D Biol. Crystallogr., 2002, vol. 58, no. 1, pp. 130–132.

    Article  CAS  Google Scholar 

  79. Aghaiypour, K., Wlodawer, A., and Lubkowski, J., Biochemistry, 2001, vol. 40, no. 19, pp. 5655–5664.

    Article  CAS  Google Scholar 

  80. Curran, M.P., Daniel, R.M., Guy, G.R., and Morgan, H.W., Arch. Biochem. Biophys., 1985, vol. 241, no. 2, pp. 571–576.

    Article  CAS  Google Scholar 

  81. Goodsell, D.S., Oncologist, 2005, vol. 10, pp. 238–249.

    Article  Google Scholar 

  82. Charbonneau, D.M., Aubé, A., Rachel, N.M., Guerrero, V., Delorme, K., Breault-Turcot, J., Masson, J.F., and Pelletier, J.N., ACS Omega, 2017, vol. 2, no. 5, pp. 2114–2125.

    Article  CAS  Google Scholar 

  83. Ollenshlager, G., Roth, E., Linkesh, W., Jansen, S., Simmel, A., and Modder, B., Eur. J. Clin. Invest.,1988, vol. 18, no. 5, pp. 512–516.

    Article  Google Scholar 

  84. Nguyen, H.A., Su, Y., and Lavie, A., J. Biol. Chem., 2016, vol. 291, no. 34, pp. 17664–17676.

    Article  CAS  Google Scholar 

  85. Narta, U.K., Kanwar, S.S., and Azmi, W., Crit. Rev. Oncol. Hematol., 2007, vol. 61, no. 3, pp. 208–221.

    Article  Google Scholar 

  86. Krasotkina, Yu.V., Gladilina, Yu.A., and Sokolov, N.N., Biomeditsinskay Khimiya, 2008, vol. 54, no. 4, pp. 482–486.

    Google Scholar 

  87. Offman, M.N., Krol, M., Patel, N., Krishnan, S., Liu, J.Z., Saha, V., and Bates, P.A., Blood, 2011, vol. 117, no. 5, pp. 1614–1621.

    Article  CAS  Google Scholar 

  88. Derst, C., Henseling, J., and Röhm, K.-H., Protein Sci., 2009, vol. 9, no. 10, pp. 2009–2017.

    Article  Google Scholar 

  89. Ardalan, N., Mirzaie, S., Sepahi, A.A., and Khavari-Nejad, R.A., Med. Hypotheses, 2018, vol. 112, pp. 7–17.

    Article  CAS  Google Scholar 

  90. Yoshimoto, T., Nishimura, H., Saito, Y., Sakurai, K., Kamisaki, Y., Wada, H., Sako, M., Tsujino, G., and Inada, Y., Jpn. J. Cancer Res., 1986, vol. 77, no. 12, pp. 1264–1270.

    CAS  Google Scholar 

  91. Białkowska, A., Gromek, E., Florczak, T., Krysiak, J., Szulczewska, K., and Turkiewicz, M., in Biotechnology of Extremophiles: Grand Challenges in Biology and Biotechnology, Rampelotto, P., Ed., Springer, 2016, pp. 399–444.

    Google Scholar 

  92. Warangkar, S.C. and Khobragade, C.N., Enzyme Res., 2010, article ID 165878. https://doi.org/10.4061/2010/165878

  93. Pokrovskaya, M.V., Aleksandrova, S.S., Veselovsky, A.V., Zhdanov, D.D., Pokrovsky, V.S., Eldarov, M.A., Grishin, D.V., Gladilina, Yu.A., Toropygin, I.Yu., and Sokolov, N.N., Biomed. Chem. Res. Methods, 2019, vol. 2, no. 1, e00071.

    Article  Google Scholar 

  94. Janakiraman, S., MOJ Proteomics Bioinform., 2016, vol. 2, no. 6, pp. 171–175. https://doi.org/10.15406/mojpb.2015.02.00064

    Article  Google Scholar 

  95. Mohapatra, B.R., Bapuji, M., and Banerjee, U., Cytobios, 1997, vol. 92, pp. 370–371.

    Google Scholar 

  96. Husain, I., Sharma, A., Kumar, S., and Malik, F., PLoS One, 2016, vol. 11, no. 2, e0148877. https://doi.org/10.1371/journal.pone.0148877

    Article  CAS  Google Scholar 

  97. Kumar, S., Venkata Dasu, V., and Pakshirajan, K., Biores. Technol., 2011, vol. 102, no. 2, pp. 2077–2082. https://doi.org/10.1016/j.biortech.2010.07.114

    Article  CAS  Google Scholar 

  98. Li, W.F., Zhou, X.X., and Lu, P., Biotechnol. Adv., 2005, vol. 23, no. 4, pp. 271–281.

    Article  CAS  Google Scholar 

  99. Li, A.N., Ding, A.Y., Chen, J., Liu, S.A., Zhang, M., and Li, D.C., J. Microbiol. Biotechnol., 2007, vol. 17, no. 4, pp. 624–631.

    CAS  Google Scholar 

  100. de Azeredo, L.A.I., Freire, D.M.G., Soares, R.M.A., Leite, S.G.F., and Coelho, R.R.R., Enzyme Microb. Technol., 2004, vol. 34, nos. 3–4, pp. 354–358.

    Article  CAS  Google Scholar 

  101. ong, S.-J., Lee, Y.-H., Khan, A.R., Ullah, I., Lee, C., Park, C.K., and Shin, J.-H., J. Basic Microbiol., 2014, vol. 54, no. 6, pp. 500–508. 10.1002/jobm.20130074

    Article  CAS  Google Scholar 

  102. Bentahir, M., Feller, G., Aittaleb, M., Lamotte-Brasseur, J., Himri, T., Chessa, J.P., and Gerday, C., J. B-iol. Chem., 2000, vol. 275, no. 1, pp. 11147–11153.

    Article  CAS  Google Scholar 

  103. Thomas, M.T. and Scopes, K.R., J. Biochem., 1998, vol. 330, no. 3, pp. 1087–1095.

    Article  CAS  Google Scholar 

  104. Levieux, D., Geneix, N., and Levieux, A., J. Dairy Res., 2007, vol. 74, no. 3, pp. 296–301.

    Article  CAS  Google Scholar 

  105. Golotin, V., Balabanova, L., Likhatskaya, G., and Rasskazov. V., Mar. Biotechnol. (NY), 2015, vol. 17, no. 2, pp. 130–143.

  106. Singh, A.K., Pindi, P.K., Dube, S., Sundareswaran, V.R., and Shivaji, S., Appl. Environ. Microbiol., 2009, vol. 75, no. 13, pp. 4419–4426.

    Article  CAS  Google Scholar 

  107. Izadpanah Qeshmi, F., Homaei, A., Fernandes, P., and Javadpour, S., Microbiol. Res., 2018, vol. 208, pp. 99–112.

    Article  CAS  Google Scholar 

  108. Jaenicke, R. and Böhm, G., Curr. Opin. Struct. Biol., 1998, vol. 8, no. 6, pp. 738–748.

    Article  CAS  Google Scholar 

  109. Kleine, R., Acta Biol. Med. Ger., 1982, vol. 41, no. 1, pp. 89–102.

    CAS  Google Scholar 

  110. Tiberti, M. and Papaleo, E., J. Struct. Biol., 2011, vol. 174, no. 1, pp. 69–83.

    Article  CAS  Google Scholar 

  111. Krasotkina, J., Borisova, A.A., Gervaziev, Yu.V., and Sokolov, N.N., Biotechnol. Appl. Biochem., 2004, vol. 39, pp. 215–221.

    Article  CAS  Google Scholar 

  112. Pokrovskaya, M.V., Aleksandrova, S.S., Pokrovsky, V.S., Omeljanjuk, N.M., Borisova, A.A., Anisimova, N.Y., and Sokolov, N.N., Protein Expr. Purif., 2012, vol. 82, no. 1, pp. 150–154.

    Article  CAS  Google Scholar 

  113. Cammack, K.A., Marlborough, D.I., and Miller, D.S., Biochem. J., 1972, vol. 126, pp. 361–379.

    Article  CAS  Google Scholar 

  114. Li, X., Zhang, X., Xu, S., Xu, M., Yang, T., Wang, L., Zhang, H., Fang, H., Osire, T., and Rao, Z., Appl. Microbiol. Biotechnol., 2019, vol. 103, no. 17, pp. 7055–7070.

    Article  CAS  Google Scholar 

  115. Kelo, E., Noronkoski, T., Stoineva, I.B., Petkov, D.D., and Mononen, I., FEBS Lett., 2002, vol. 528, pp. 130–132. https://doi.org/10.1016/S0014-5793(02)03273-8

    Article  CAS  Google Scholar 

  116. Hong, S.J., Park, G.S., Ullah, I., Shin, J.H., and Lee, C., J. Korean Soc. Appl. Biol. Chem., 2012, vol. 55, pp. 213–218. https://doi.org/10.1007/s13765-012-1006

    Article  CAS  Google Scholar 

  117. Jia, M., Xu, M., He, B., and Rao, Z., J. Agric. Food Chem., 2013, vol. 61, pp. 9428–9434. https://doi.org/10.1021/jf402636w

    Article  CAS  Google Scholar 

  118. Bhat, M.R., Nair, J.S., and Marar, T., Int. J. Pharm. Sci. Res., 2015, vol. 6, pp. 3599–3605. https://doi.org/10.13040/IJPSR.0975-8232.6(8).3599-05.z

    Article  CAS  Google Scholar 

  119. Chohan, S.M., Nisar, M.A., Rashid, N., Gharib, G., Bashir, Q., and Siddiqui, M.A., Biologia, 2016, vol. 71, no. 12, pp. 1315–1319. https://doi.org/10.1515/biolog-2016-0168

    Article  CAS  Google Scholar 

  120. Li, X., Zhang, X., Xu, S., Xu, M., Yang, T., Wang, L., Zhang, H., Fang, H., Osire, T., and Rao, Z., Appl. Microbiol. Biotechnol., 2019, vol. 103, no. 17, pp. 7055−7070. https://doi.org/10.1007/s00253-019-09967-w

    Article  CAS  Google Scholar 

Download references

Funding

This work was partially supported by the Russian Foundation for Basic Research (project no. 19-08-01112 A) (collection of the literature data on extremophilic L-ASPases) and the Basic Research Program of the State Academies of Sciences for 2013−2020 (results of our own research on L‑ASPases of mesophilic microorganisms).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Sokolov.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This article does not describe any studies using animals and humans as research objects.

CONFLICT OF INTEREST

The authors declare that they have no conflict of int-erest.

Additional information

Translated by A. Medvedev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dumina, M.V., Eldarov, M.A., Zdanov, D.D. et al. L-Asparaginases of Extremophilic Microorganisms in Biomedicine. Biochem. Moscow Suppl. Ser. B 14, 277–296 (2020). https://doi.org/10.1134/S1990750820040046

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990750820040046

Keywords

Navigation