Skip to main content
Log in

The Effect of The Neuroprotector Isatin on Complex Formation of Beta-Amyloid Peptide Fragments with Some Intracellular Proteins

  • Published:
Biochemistry (Moscow), Supplement Series B: Biomedical Chemistry Aims and scope Submit manuscript

Abstract

Amyloid-β peptide (1−42) (Aβ1-42) is a key player in the development and progression of Alzheimer’s disease (AD) and related pathologies, determined by formation of protein aggregates in the central nervous system. Aβ1-42 binding to crucial intracellular targets (and their subsequent inactivation) obviously represents one of the earliest events preceding extracellular pathogenic oligomerization/aggregation of Aβ1-42. It is reasonable to expect that dissociation of the Aβ1-42 complexes with intracellular proteins by means of inhibitors followed by subsequent degradation of Aβ1-42 would not only protect critically important proteins but also prevent intracellular accumulation of Аβ1-42. The aim of this study was to investigate the effect of the neuroprotector isatin (100 µM) on interaction of known Aβ-binding proteins, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and pyruvate kinase, with Aβ1-42 and its fragments (Aβ1-28, Aβ12-28, Aβ25-35). Aβ1-42 and its fragments (Aβ1-28, Aβ12-28, Aβ25-35) immobilized on the Biacore optical biosensor chip interacted with GAPDH and pyruvate kinase. The lowest and basically equal Kd values were determined for GAPDH and pyruvate kinase complexes with immobilized Aβ1-42 and Aβ25-35. The presence of 100 µM isatin caused a significant (more than fivefold) increase in the Kd values for GAPDH complexes with all Aβ peptides except Aβ1-28. In contrast to GAPDH isatin increased dissociation of pyruvate kinase complexes only with Aβ1-42 (causing a 30-fold increase in Kd) and to a lesser extent with Aβ12-28 and Aβ25-35 (a 10-fold increase in the Kd value). It should be noted that in the presence of isatin the Kd values for GAPDH and pyruvate kinase complexes with all Aβ studied were in a narrower concentration range (10–7 M–10−6 M) than in the absence of this neuroprotector (10–8 M–10–6 M). Data obtained suggest existence of principal possibility of (pharmacological) protection of crucial intracellular targets against both Aβ1-42, and its aggressive truncated peptides (Aβ25-35).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Hardy, J. and Selkoe, D.J., Science, 2002, vol. 297, pp. 353–356.

    Article  CAS  Google Scholar 

  2. Masters, C.L. and Selkoe. D.J., Cold Spring Harb. Perspect. Med., 2012, vol. 2, no. 6, a006262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Musiek, E.S. and Holtzman, D.M., Nat. Neurosci., 2015, vol. 18, pp. 800–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. LaFerla, F.M., Green, K.N., and Oddo, S., Nat. Rev. Neurosci., 2007, vol. 8, pp. 499–509.

    Article  CAS  PubMed  Google Scholar 

  5. Kumar, S., Wirths, O., Theil, S., Gerth, J., Bayer, T.A., and Walter, J., Acta Neuropathol., 2013, vol. 125, pp. 699–709.

    Article  CAS  PubMed  Google Scholar 

  6. Wirths, O., Multhaup, G., Czech, C., Blanchard, V., Moussaoui, S., Tremp, G., Pradier, L., Beyreuther, K., and Bayer, T.A., Neurosci. Lett., 2001, vol. 306, pp. 116–120.

    Article  CAS  PubMed  Google Scholar 

  7. Reddy, P.H. and Beal, M.F., Trends. Mol. Med., 2008, vol. 14, pp. 45–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Habib, L., Lee, M.T.C., and Yang, J., J. Biol. Chem., 2010, vol. 285, pp. 38 933–38 943.

    Article  CAS  Google Scholar 

  9. Yao, J., Du, H., Yan, S., Fang, F., Wang, C., Lue, L.F., Guo, L., Chen, D., Stern, D.M., Gunn Moore, F.J., Xi Chen, J., Arancio, O., and Yan, S.S., J. Neurosci., 2011, vol. 31, pp. 2313–2320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Petrushanko, I.Y., Mitkevich, V.A., Anashkina, A.A., Adzhubei, A.A., Burnysheva, K.M., Lakunina, V.A., Kamanina, Y.V., Dergousova, E.A., Lopina, O.D., Ogunshola, O.O., Bogdanova, A.Y., and Makarov, A.A., Sci. Rep., 2016, vol. 6, 27 738.

    Article  CAS  Google Scholar 

  11. Medvedev, A.E., Buneeva, O.A., and Glover, V., Biol. Targets Ther., 2007, vol. 1, pp. 151–162.

    CAS  Google Scholar 

  12. Medvedev, A., Buneeva, O., Gnedenko, O., Ershov, P., and Ivanov, A., Biofactors, 2018, vol. 44, no. 2, pp. 95–108.

    Article  CAS  PubMed  Google Scholar 

  13. Medvedev, A.E., Buneeva, O.A., Kopylov, A.T., Gnedenko, O.V., Medvedeva, M.V., Kozin, S.A., Ivanov, A.S., Zgoda, V.G., and Makarov, A.A., Int. J. Mol. Sci., 2015, vol. 16, pp. 476–495.

    Article  CAS  Google Scholar 

  14. Florinskaya, A., Ershov, P., Mezentsev, Y., Kaluzhskiy, L., Yablokov, E., Medvedev, A., and Ivanov, A., Sensors (Basel), 2018, vol. 18, no. 5, pii: E1616.

    Article  CAS  PubMed  Google Scholar 

  15. Buneeva, O.A., Gnedenko, O.V., Medvedeva, M.V., Ivanov, A.S., and Medvedev, A.E., Biomed. Khim., 2016, vol. 62, pp. 720–724. https://doi.org/10.18097/PBMC20166206720

    Article  CAS  PubMed  Google Scholar 

  16. Scopes, R. K. and Stoter, A., Methods Enzymol., 1982, vol. 90, pt E, pp. 479–490.

  17. Medvedev, A., Buneeva, O., Kopylov, A., Gne-denko, O., Ivanov, A., Zgoda, V., and Makarov, A.A., Methods Mol. Biol., 2015, vol. 1295, pp. 465–477.

    Article  CAS  PubMed  Google Scholar 

  18. Rogeberg, M., Furlund, C.B., Moe, M.K., and Fladby, T., Biochimie, 2014, vol. 105, pp. 216–220.

    Article  CAS  PubMed  Google Scholar 

  19. Millucci, L., Ghezzi, L., Bernardini, G., and Santucci, A., Current Protein and Peptide Science, 2010, vol. 11, pp. 54–67

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Medvedev.

Additional information

Translated by A. Medvedev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buneeva, O.A., Gnedenko, O.V., Medvedeva, M.V. et al. The Effect of The Neuroprotector Isatin on Complex Formation of Beta-Amyloid Peptide Fragments with Some Intracellular Proteins. Biochem. Moscow Suppl. Ser. B 13, 81–85 (2019). https://doi.org/10.1134/S1990750819010037

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990750819010037

Keywords

Navigation