Skip to main content
Log in

Morphofunctional changes of dendritic cells induced by sulfated polysaccharides of brown algae

  • Published:
Biochemistry (Moscow), Supplement Series B: Biomedical Chemistry Aims and scope Submit manuscript

Abstract

The effect of structurally different sulfated polysaccharides from brown algae Fucus evanescens, Saccharina cichorioides, and Saccharina japonica on the morphofunctional changes of dendritic cells has been studied using flow cytometry and phase-contrast microscopy. It has been found that the dendritic cells are characterized by larger sizes, vacuolated cytoplasm, eccentrically located nucleus, the presence of numerous cytoplasmic pseudopodia of various forms; they do express surface markers, thus providing evidence for their maturation (CD83, CD11c, HLA-DR, CD86). Increased production of immunoregulatory (IL-12) and proinflammatory cytokines (TNF-α, IL-6) by dendritic cells polarizes the development of the Th-1 type immune response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akhmatova, N.K. and Kiselevskii, M.V., Vrozhdennyi immunitet protivoopukholevyi i protivoinfektsionnyi (Antitumor and Antiinfective Innate Immunity), Moscow Prakticheskaya Meditsina, 2008.

    Google Scholar 

  2. Talaev, V.Yu., Plekhanova, M.V., and Matveichev, A.V., Medial, 2014, vol. 2, p. 135–153.

    Google Scholar 

  3. Kremer, E.E., Cellular mechanisms of the immune response induced by the Opisthorchis felineus extract in bronchial asthma, Cand. Sci. (Med. Sci.), Tomsk Siberian State Medical University, 2012.

    Google Scholar 

  4. Anastyuk, S.D. and Zvyagintseva, T.N., in Fucoidans–sulfatirovannye polysakharidy burykh vodoroslei. Struktura. Fermentativnaya transformatsiya i biologicheskie svoistva (Fucoidans—Sulfated Polysaccharides from Brown Algae. Structure. Enzymatic transformation and Biological Features), Besednova N.N. and Zvyagintseva T.N., Eds., Vladivostok: Dal’nauka, FEB RAS, 2014, pp. 60–95.

  5. Kim, S.-Y. and Joo, H.-G., J. Vet. Sci., 2015, vol. 16, pp. 145–150. doi 10.4142/jvs.2015.16.2.145

    Article  Google Scholar 

  6. Fitton, J. H., Stringer, D.N., and Karpiniec, S.S., Mar. Drugs, 2015, vol. 13, pp. 5920–5946. doi 10.3390/md13095920

    Article  CAS  Google Scholar 

  7. Lebedynskaya, E.A., Makarenkova, I.D., Lebedynskaya, O.V., Akhmatova, N.K., and Zvyagintseva, TN., Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry, 2015, vol. 9, pp. 86–94.

    Article  Google Scholar 

  8. Zvyagintseva, T.N., Shevchenko, N.M., Chizhov, A.O., Krupnova, T.N., Sundukova, E.V., and Isakov, V.V., J. Exp. Mar. Biol. Ecol., 2003, vol. 294, pp. 1–13.

    Article  CAS  Google Scholar 

  9. Makarenkova, I.D., Logunov, D.Yu., Tukhvatulin, A.I., Semenova, I.B., Zvyagintseva, T.N., Gorbach, V.I., Ermakova, S.P., and Besednova, N.N., Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry, 2012, vol. 6, no. 1, pp. 75–80.

    Article  Google Scholar 

  10. Wang, W., Wang, S.X., and Guan, H.S., Mar. Drugs, 2012, vol. 10, pp. 2795–2816.

    Article  Google Scholar 

  11. Vishchuk, O.S., Tarbeeva, D.V., Ermakova, S.P., and Zvyagintseva, T.N., Chem. Biodivers., 2012, vol. 9, pp. 817–828.

    Article  CAS  Google Scholar 

  12. Fang, Q., Wang, J.-F., Zha, X.-Q., Cui, S.-H., Cao L., and Luo, J.-P., Carbohydr. Polym., 2015, vol. 134, pp. 66–73.

    Article  CAS  Google Scholar 

  13. Meng, J., Cao, Y., Meng, Y., Luo, H., Gao, X., and Shan, F., Int. J. Biol. Macromol., 2014, vol. 69, pp. 388–392.

    Article  CAS  Google Scholar 

  14. Lin, C.C., Pan, I.H., Li, Y.R., Pan, Y.G., Lin, M.K., Lu, Y.H., Wu, H.C, and Chu, C.L., PLoS One, 2015, vol. 10, no. 2, e0116191. doi 10.1371/journal. pone.0116191

    Google Scholar 

  15. Chkadua, G.Z., Zabotina, T.N., Burkova, A.A., Tamaeva, Z.E., Ogorodnikova, E.V., Zhordania, K.I., Kadagidze, Z.G., and Baryshnikov, A.Yu., Eksper. Bioter., 2002, vol. 1, pp. 56–62.

    Google Scholar 

  16. Boks, M.A., Kager-Groenland, J.R., Haasjes, M.S., Zwaginga, J.J., van Ham, S.M., and ten Brinke, A., Clin. Immunol., 2012, vol. 142, pp. 332–342.

    Article  CAS  Google Scholar 

  17. Khil’chenko, S.R., Zaporozhets, T.S., Shevchenko, N.M., Zvyagintseva, T.N., Vogel, U., Seeberger, P., and Lepenies, B., Journal of Carbohydrate Chemistry, 2011, vol. 30, pp. 291–305.

    Article  Google Scholar 

  18. Besednova, N.N. and Zaporozhets, T.S., Zhurn. Mikrobiol. Epidemiol. Immunobiol., 2011, vol. 5, pp. 98–106.

    Google Scholar 

  19. Teruya, T., Takeda, S., Tamaki, Y., and Tako, M., Bioscience, Biotechnology and Biochemistry, 2010, vol. 4, pp. 1960–1962.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. D. Makarenkova.

Additional information

Original Russian Text © I.D. Makarenkova, N.K. Akhmatova, S.P. Ermakova, N.N. Besednova, 2017, published in Biomeditsinskaya Khimiya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makarenkova, I.D., Akhmatova, N.K., Ermakova, S.P. et al. Morphofunctional changes of dendritic cells induced by sulfated polysaccharides of brown algae. Biochem. Moscow Suppl. Ser. B 11, 243–250 (2017). https://doi.org/10.1134/S1990750817030076

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990750817030076

Keywords

Navigation