Skip to main content
Log in

The effect of resveratrol and dihydroquercetin inclusion into phospholipid nanopatricles on their bioavalability and specific activity

  • Published:
Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry Aims and scope Submit manuscript

Abstract

Bioavailability and activity of natural polyphenols, resveratrol (RES) and dihydroquercetin (DHQ), included in phospholipid nanoparticles have been investigated. Specific features of RES and DHQ in these compositions have been analyzed in vivo and in vitro experiments in comparison with free substances. Preincubation of low density lipoproteins (LDL), isolated from plasma of healthy donors, with RES or DHQ included in phospholipid nanoparticles caused a more pronounced delay in Cu2+ induced lipid oxidation compared with the free substances, and reduced the formation of lipid peroxidation (LPO) products. In phospholipid formulations bioavailability of RES and DHQ orally administered to rats were 1.5–2-fold higher than that of free substances. Prophylactic administration of phospholipid formulations containing RES or DHQ for two weeks resulted in the 25% increase of animal survival in the acute hypoxia model and 1.5-fold increase of catalase activity assayed in brain homogenates as compared with free substances. Using the model of endothelial dysfunction in rats induced by L-NAME, nitric oxide synthase inhibitor, it was shown, that RES markedly attenuated the inhibitory effect of L-NAME on NO synthesis. RES administered in phospholipid nanoparticles demonstrated the same efficiency at a dose one order of magnitude lower compared than that of free RES. The load test with resistance (clamping of the ascending aorta for 30 s) showed that the phospholipid formulation of RES exhibited a more pronounced protective effect due to stimulation of endothelial NO-synthase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tarahovsky, Y.S., Muzafarov, E.N., and Kim, Y.A., Mol. Cell Biochem., 2008, vol. 314, nos. 1–2, pp. 65–71.

    Article  CAS  Google Scholar 

  2. Vang, O., Ahmad, N., Baile, C.A., Baur, J.A., Brown, K., Criszar, A., Das, D.K., Delmas, D., Gottfried, C., Lin, H.Y., Ma, O.Y., Mukhopadhyay, P., Nalini, J.M., et al., PLoS One, 2011, vol. 6, no. 6, e18881, pp. 1–11.

    Article  Google Scholar 

  3. Weidmann, A.E., Eur. J. Pharmacol., 2012, vol. 684, nos. 1–3, pp. 19–26.

    Article  CAS  Google Scholar 

  4. Kulkarni, S.S. and Cant, C., Biochim. Biophys. Acta, 2014, Oct. 11, pii: S0925-4439(14)00311-1 [Epub ahead of print].

    Google Scholar 

  5. Yamagata, K., Tagami, M., and Yamori, Y., Nutrion, 2015, vol. 31, no. 1, pp. 28–37.

    Article  CAS  Google Scholar 

  6. Nakata, R., Takahashi, S., and Inoue, H., Biol. Pharm. Bull., 2012, vol. 35, no. 3, pp. 273–279.

    Article  CAS  Google Scholar 

  7. Emura, K., Yokomizo, A., Tavoshi, T., and Moriwaki, M., J. Nutr. Sci. Vitaminol., 2007, vol. 53, no. 1, pp. 68–74.

    Article  CAS  Google Scholar 

  8. Potenza, M.A., Marasciulo, F.L., Tarquinio, M., Tiravanti, E., Colantuono, G., Federici, A., Kim, J.A., Quon, M.J., and Montagnani, M., Am. J. Physiol. Endocrinol. Metab., 2007, vol. 292, no. 5, E1378–13287.

    Article  Google Scholar 

  9. Zherdev, V.P., Kolyvanov, G.B., Litvin, A.A., Sariev, A.K., Viglinskaya, A.O., Gekkiev, B.I., Grigor’ev, A.M., and Gorlov, V.V., Eksper. Klin. Farmakol., 2010, vol. 73, no. 1, pp. 23–25.

    CAS  Google Scholar 

  10. Smoliga, J.M. and Blanchard, O., Molecules, 2014, vol. 19, no. 11, pp. 17154–17172.

    Article  Google Scholar 

  11. Naumov, A.A. and Potselueva, M.M., Tsitologiya, 2010, vol. 52, no. 4, pp. 311–316.

    CAS  Google Scholar 

  12. Cadena, P.G., Pereira, M.A., Cordeiro, R.B., Cavalcanti, I.M., Barros Neto, B., Pimentel, M.C., Lima Filho, J.L., Silva, V.L., and Santos-Magalhães, N.S., Biochim. Biophys. Acta, 2013, vol. 1828, no. 2, pp. 309–316.

    Article  CAS  Google Scholar 

  13. Neves, A.R., Lucio, M., Lima, J.L., and Reis, S., Curr. Med. Chem., 2012, vol. 19, no. 11, pp. 1663–1668.

    Article  CAS  Google Scholar 

  14. Ipatova, O.M., Torkhovskaya, T.I., Medvedeva, N.V., Prozorovskyi, V.N., Ivanova, N.D., Shironin, A.V., Baranova, V.S., and Archakov, A.I., Biomed. Khim., 2010, vol. 56, pp. 101–119.

    Article  CAS  Google Scholar 

  15. Shironin, A.V., Ipatova, O.M., Medvedeva, N.V., Prozorovskyi, V.N., Tikhonova, E.G., Zakharova, T.S., Sanzhakov, M.A., and Torkhovskaya, T.I., Biomed. Khim., 2011, vol. 57, pp. 671–676.

    Article  CAS  Google Scholar 

  16. Prozorovskaya, N.N., Baranova, V.S., Tikhonova, E.G., Ipatova, O.M., Prozorovskyi, V.N., Guseva, D.A., and Archakov, A.I., Rus. Patent no. 2252029, 2009.

    Google Scholar 

  17. Seidel, D., Alaupovic, P., Furman, R.H., and McConathy, W.J., J. Clin. Invest., 1970, vol. 49, no. 12, pp. 2396–2407.

    Article  CAS  Google Scholar 

  18. Semigolovskyi, N.Yu., Kolbasov, S.Yu., Lisitsyn, D.V., and Fazylov, M.F., Vestn. SPb Univers., Ser. 11 (Meditsina), 2008, Suppl., pp. 41–46.

    Google Scholar 

  19. Rauchová, H., Vokurková, M., and Koudelová, J., Physiol. Res., 2012, vol. 61, Suppl. 1, pp. S89–S101.

    Google Scholar 

  20. Kataoka, C., Egashira, K., Inoue, S., Takemoto, M., Ni, W., Koyanagi, M., Kitamoto, S., Usui, M., Kaibuchi, K., Shimokawa, H., and Takeshita, A., Hypertension, 2002, vol. 39, no. 2, pp. 245–250.

    Article  CAS  Google Scholar 

  21. Korokin, M.V., Korokina, L.V., Granik, V.G., and Makarov, V.A., Biomeditsina, 2006, vol. 4, pp. 90–92.

    Google Scholar 

  22. Artyushkov, E.B., Doctoral Dissertation in Medicine, Staraya Kupavna, 2009.

    Google Scholar 

  23. Tikhonov, I., Rodinsky, V., and Pliss, E., Int. J. Chem. Kinet., 2009, vol. 41, pp. 92–100.

    Article  CAS  Google Scholar 

  24. Joo, S.J., Park, H.J., Park, J.H., Cho, J.G., Kang, J.H., Jeong, T.S., Kang, H.C., Lee, D.Y., Kim, H.S., Byun, S.Y., and Baek, N.I., Int. J. Mol. Sci., 2014, vol. 15, no. 9, pp. 16418–16429. doi 10.3390/ijms 150916418

    Article  CAS  Google Scholar 

  25. Florence, A.T., J. Drug Target., 2004, vol. 12, no. 2, pp. 65–70.

    Article  CAS  Google Scholar 

  26. Markov, Kh.M., Patol. Fiziol. Eksper. Ter., 2006, no. 3, pp. 2–7.

    Google Scholar 

  27. Mussi, S.V., Silva, R.C., Oliveira, M.C., Lucci, C.M., Azevedo, R.B., and Ferreira, L.A., Eur. J. Pharm Sci., 2013, vol. 48, nos. 1–2, pp. 282–290.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. I. Torkhovskaya.

Additional information

Original Russian Text © D.A. Guseva, Yu.Yu. Khudoklinova, N.V. Medvedeva, V.S. Baranova, T.S. Zakharova, E.B. Artyushkova, T.I. Torkhovskaya, O.M. Ipatova, 2016, published in Biomeditsinskaya Khimiya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guseva, D.A., Khudoklinova, Y.Y., Medvedeva, N.V. et al. The effect of resveratrol and dihydroquercetin inclusion into phospholipid nanopatricles on their bioavalability and specific activity. Biochem. Moscow Suppl. Ser. B 10, 138–144 (2016). https://doi.org/10.1134/S1990750816020062

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990750816020062

Keywords

Navigation