Skip to main content
Log in

Droplet digital PCR, a prospective technological approach to quantitative profiling of microRNA

  • Published:
Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry Aims and scope Submit manuscript

Abstract

MicroRNA is a special type of regulatory molecules modulating gene expression. Circulating microRNAs found in blood and other biological body fluids are now considered as potential biomarkers of human pathology. Quantitative changes of particular microRNAs have been recognized in many oncological diseases and other disorders. A recently developed method of droplet digital PCR (ddPCR) possesses a number of advantages making this method the most suitable for verification and validation of perspective microRNA markers of various human pathologies. These advantages include high accuracy and reproducibility of microRNA quantification as well as possibility of direct high-throughput determination of the absolute number of microRNA copies within a wide dynamic range. The present review considers microRNA biogenesis, the origin of circulating microRNAs, and methods used for their quantification. The special technical features of ddPCR, which make this method especially attractive for studying microRNAs as biomarkers of human pathologies and for basic research devoted to aspects of gene regulation by microRNA molecules, are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bartel, D.P., Cell, 2004, vol. 116, pp. 281–297. doi 10.1038/nrg1328

    Article  CAS  Google Scholar 

  2. Stefani, G. and Slack, F.J., Nat. Rev. Mol. Cell. Biol., 2008, vol. 9, pp. 219–230. doi 10.1038/nrm2347

    Article  CAS  Google Scholar 

  3. Fernandez-Hernando, C., Suarez, Y., Rayner, K.J., and Moore, K.J., Curr. Opin. Lipidol., 2010, vol. 22, pp. 86–92. doi 10.1097/MOL.0b013e3283428d9d

    Article  Google Scholar 

  4. Zhu, H., Shyh-Chang, N., Segre, A.V., Shinoda, G., Shah, S.P., Einhorn, W.S., Takeuchi, A., Engreitz, J.M., Hagan, J.P., Kharas, M.G., Urbach, A., Thornton, J.E., Triboulet, R., Gregory, R.I., Altshuler, D., and Daley, G.Q., Cell, 2011, vol. 147, pp. 81–94. doi 10.1016/jcell.2011.08.033

    Article  CAS  Google Scholar 

  5. Lewis, B.P., Burge, C.B., and Bartel, D.P., Cell, 2005, vol. 120, pp. 15–20. doi http://dxdoiorg/ 10.1016/jcell.2004.12.035

    Article  CAS  Google Scholar 

  6. Allegra, A., Alonci, A., Campo, S., Penna, G., Petrungaro, A., Gerace, D., and Musolino, C., Int. J. Oncol., 2012, vol. 41, pp. 1897–1912. doi 10.3892/ijo.2012.1647

    CAS  Google Scholar 

  7. Cuk, K., Zucknick, M., Madhavan, D., Schott, S., Golatta, M., Heil, J., Marme, F., Turchinovich, A., Sinn, P., Sohn, C., Junkermann, H., Schneeweiss, A., and Burwinkel, B., PLoS One, 2013, vol. 8, e76729. doi 10.1371/journalpone.0076729

  8. Fayyad-Kazan, H., Bitar, N., Najar, M., Lewalle, P., Fayyad-Kazan, M., Badran, R., Hamade, E., Daher, A., Hussein, N., ElDirani, R., Berri, F., Vanhamme, L., Burny, A., Martiat, P., Rouas, R., and Badran, B., J. Transl. Med., 2013, vol. 11, p. 31. doi 10.1186/1479-5876-11-31

    Article  CAS  Google Scholar 

  9. Huang, Y., Hu, Q., Deng, Z., Hang, Y., Wang, J., and Wang, K., Technol. Cancer Res. Treat., 2014, vol. 13, pp. 277–287. doi 10.7785/tcrt.2012.500377

    CAS  Google Scholar 

  10. Kondkar, A.A. and Abu-Amero, K.K., Biomed. Res. Int., 2015, vol. 2015, 821823. doi 10.1155/ 2015/821823

    Article  Google Scholar 

  11. Menghini, R., Casagrande, V., and Federici, M., J. Cardiovasc. Transl. Res., 2013, vol. 6, pp. 924–930. doi 10.1007/s12265-013-9487-7

    Article  Google Scholar 

  12. Cheng, L., Quek, C.Y., Sun, X., Bellingham, S.A., and Hill, A.F., Front. Genet., 2013, vol. 4, p. 150. doi 10.3389/fgene.2013.00150

    Article  Google Scholar 

  13. Zampetaki, A., Kiechl, S., Drozdov, I., Willeit, P., Mayr, U., Prokopi, M., Mayr, A., Weger, S., Oberhollenzer, F., Bonora, E., Shah, A., Willeit, J., and Mayr, M., Circ. Res., 2010, vol. 107, pp. 810–817. doi 10.1161/CIRCRESAHA.110.226357

    Article  CAS  Google Scholar 

  14. Zeng, L., Cui, J., Wu, H., and Lu, Q., Autoimmunity, 2014, vol. 47, pp. 419–429. doi 10.3109/ 08916934.2014.929667

    Article  CAS  Google Scholar 

  15. Babalola, O., Mamalis, A., Lev-Tov, H., and Jagdeo, J., Arch. Dermatol. Res., 2013, vol. 305, pp. 763–776. doi 10.1007/s00403-013-1410-1

    Article  CAS  Google Scholar 

  16. Beyer, C., Zampetaki, A., Lin, N.Y., Kleyer, A., Perricone, C., Iagnocco, A., Distler, A., Langley, S. R., Gelse, K., Sesselmann, S., Lorenzini, R., Niemeier, A., Swoboda, B., Distler, J.H., Santer, P., Egger, G., Willeit, J., Mayr, M., Schett, G., and Kiechl, S., Ann. Rheum. Dis., 2015, vol. 74, e18. doi 10.1136/annrheumdis-2013-204698

    Article  Google Scholar 

  17. Hindson, B.J., Ness, K.D., Masquelier, D.A., Belgrader, P., Heredia, N.J., Makarewicz, A.J., Bright, I.J., Lucero, M.Y., Hiddessen, A.L., Legler, T.C., Kitano, T.K., Hodel, M.R., Petersen, J.F., Wyatt, P.W., Steenblock, E.R., Shah, P.H., Bousse, L.J., Troup, C.B., Mellen, J.C., Wittmann, D.K., Erndt, N.G., Cauley, T.H., Koehler, R.T., So, A.P., Dube, S., Rose, K.A., Montesclaros, L., Wang, S., Stumbo, D.P., Hodges, S.P., Romine, S., Milanovich, F.P., White, H.E., Regan, J.F., Karlin-Neumann, G.A., Hindson, C.M., Saxonov, S., and Colston, B.W., Anal. Chem., 2011, vol. 83, pp. 8604–8610. doi 10.1021/ac202028g

    Article  CAS  Google Scholar 

  18. Pinheiro, L.B., Coleman, V.A., Hindson, C.M., Herrmann, J., Hindson, B.J., Bhat, S., and Emslie, K.R., Anal. Chem., 2012, vol. 84, pp. 1003–1011. doi 10.1021/ac202578x

    Article  CAS  Google Scholar 

  19. Hindson, C.M., Chevillet, J.R., Briggs, H.A., Gallichotte, E.N., Ruf, I.K., Hindson, B.J., Vessella, R.L., and Tewari, M., Nat. Methods, 2013, vol. 10, pp. 1003–1005. doi 10.1038/nmeth.2633

    Article  CAS  Google Scholar 

  20. Lee, R.C., Feinbaum, R.L., and Ambros, V., Cell, 1993, vol. 75, pp. 843–854. doi http:// dxdoiorg/10.1016/0092-8674(93)90529-Y

    Article  CAS  Google Scholar 

  21. Zhao, T., Li, G., Mi, S., Li, S., Hannon, G.J., Wang, X.J., and Qi, Y., Genes Dev., 2007, vol. 21, pp. 1190–1203. doi 10.1101/gad.1543507

    Article  CAS  Google Scholar 

  22. Ibanez-Ventoso, C., Vora, M., and Driscoll, M., PLoS One, 2008, vol. 3, e2818. doi 10.1371/journalpone.0002818

    Article  Google Scholar 

  23. Ozsolak, F., Poling, L.L., Wang, Z., Liu, H., Liu, X.S., Roeder, R.G., Zhang, X., Song, J.S., and Fisher, D.E., Genes Dev., 2008, vol. 22, pp. 3172–3183. doi 10.1101/gad.1706508

    Article  CAS  Google Scholar 

  24. Monteys, A.M., Spengler, R.M., Wan, J., Tecedor, L., Lennox, K.A., Xing, Y., and Davidson, B.L., RNA, 2010, vol. 16, pp. 495–505. doi 10.1261/rna.1731910

    Article  Google Scholar 

  25. Ha, M. and Kim, V.N., Nat. Rev. Mol. Cell. Biol., 2014, vol. 15, pp. 509–524. doi 10.1038/nrm3838

    Article  CAS  Google Scholar 

  26. Dalmay, T., Essays Biochem., 2013, vol. 54, pp. 29–38. doi 10.1042/bse0540029

    Article  CAS  Google Scholar 

  27. Duursma, A.M., Kedde, M., Schrier, M., le Sage, C., and Agami, R., RNA, 2008, vol. 14, pp. 872–877. doi 10.1261/rna.972008

    Article  CAS  Google Scholar 

  28. Stroynowska-Czerwinska, A., Fiszer, A., and Krzyzosiak, W.J., Cell. Mol. Life Sci., 2014, vol. 71, pp. 2253–2270. doi 10.1007/s00018-013-1551-6

    Article  CAS  Google Scholar 

  29. Lim, L.P., Lau, N.C., Garrett-Engele, P., Grimson, A., Schelter, J.M., Castle, J., Bartel, D.P., Linsley, P.S., and Johnson, J.M., Nature, 2005, vol. 433, pp. 769–773. doi 10.1038/nature03315

    Article  CAS  Google Scholar 

  30. Selbach, M., Schwanhausser, B., Thierfelder, N., Fang, Z., Khanin, R., and Rajewsky, N., Nature, 2008, vol. 455, pp. 58–63. doi 10.1038/nature07228

    Article  CAS  Google Scholar 

  31. Bazzini, A.A., Lee, M.T., and Giraldez, A.J., Science, 2012, vol. 336, pp. 233–237. doi 10.1126/science

    Article  CAS  Google Scholar 

  32. Djuranovic, S., Nahvi, A., and Green, R., Science, 2012, vol. 336, pp. 237–240. doi 10.1126/science

    Article  CAS  Google Scholar 

  33. Jonas, S. and Izaurralde, E., Nat. Rev. Genet., 2015, vol. 16, pp. 421–433. doi 10.1038/nrg3965

    Article  CAS  Google Scholar 

  34. Peltier, H.J. and Latham, G.J., RNA, 2008, vol. 14, pp. 844–852. doi 10.1261/rna.939908

    Article  CAS  Google Scholar 

  35. Weber, J.A., Baxter, D.H., Zhang, S., Huang, D.Y., Huang, K.H., Lee, M.J., Galas, D.J., and Wang, K., Clin. Chem., 2010, vol. 56, pp. 1733–1741. doi 10.1373/clinchem.2010.147405

    Article  CAS  Google Scholar 

  36. Arroyo, J.D., Chevillet, J.R., Kroh, E.M., Ruf, I.K., Pritchard, C.C., Gibson, D.F., Mitchell, P.S., Bennett, C.F., Pogosova-Agadjanyan, E.L., Stirewalt, D.L., Tait, J.F., and Tewari, M., Proc. Natl. Acad. Sci. USA, 2011, vol. 108, pp. 5003–5008. doi 10.1073/pnas.1019055108

    Article  CAS  Google Scholar 

  37. Mitchell, P.S., Parkin, R.K., Kroh, E.M., Fritz, B.R., Wyman, S.K., Pogosova-Agadjanyan, E.L., Peterson, A., Noteboom, J., O’Briant, K.C., Allen, A., Lin, D.W., Urban, N., Drescher, C.W., Knudsen, B.S., Stirewalt, D.L., Gentleman, R., Vessella, R.L., Nelson, P.S., Martin, D.B., and Tewari, M., Proc. Natl. Acad. Sci. USA, 2008, vol. 105, pp. 10513–10518. doi 10.1073/pnas.0804549105

    Article  CAS  Google Scholar 

  38. Wang, K., Zhang, S., Weber, J., Baxter, D., and Galas, D.J., Nucleic Acids Res., 2010, vol. 38, pp. 7248–7259. doi 10.1093/nar/gkq601

    Article  CAS  Google Scholar 

  39. Turchinovich, A., Weiz, L., Langheinz, A., and Burwinkel, B., Nucleic Acids Res., 2011, vol. 39, pp. 7223–7233. doi 10.1093/nar/gkr254

    Article  CAS  Google Scholar 

  40. Vickers, K.C., Palmisano, B.T., Shoucri, B.M., Shamburek, R.D., and Remaley, A.T., Nat. Cell Biol., 2011, vol. 13, pp. 423–433. doi 10.1038/ncb2210

    Article  CAS  Google Scholar 

  41. Turchinovich, A., Weiz, L., and Burwinkel, B., Trends Biochem. Sci., 2012, vol. 37, pp. 460–465. doi 10.1016/jtibs.2012.08.003

    Article  CAS  Google Scholar 

  42. Zernecke, A., Bidzhekov, K., Noels, H., Shagdarsuren, E., Gan, L., Denecke, B., Hristov, M., Koppel, T., Jahantigh, M.N., Lutgens, E., Wang, S., Olson, E.N., Schober, A., and Weber, C., Sci. Signal., 2009, vol. 2, ra81. doi 10.1126/scisignal.2000610

  43. Hergenreider, E., Heydt, S., Treguer, K., Boettger, T., Horrevoets, A.J., Zeiher, A.M., Scheffer, M.P., Frangakis, A.S., Yin, X., Mayr, M., Braun, T., Urbich, C., Boon, R.A., and Dimmeler, S., Nat. Cell Biol., 2012, vol. 14, pp. 249–256. doi 10.1038/ncb2441

    Article  CAS  Google Scholar 

  44. Zhang, Y., Liu, D., Chen, X., Li, J., Li, L., Bian, Z., Sun, F., Lu, J., Yin, Y., Cai, X., Sun, Q., Wang, K., Ba, Y., Wang, Q., Wang, D., Yang, J., Liu, P., Xu, T., Yan, Q., Zhang, J., Zen, K., and Zhang, C.Y., Mol. Cell, 2010, vol. 39, pp. 133–144. doi 10.1016/jmolcel.2010.06.010

    Article  CAS  Google Scholar 

  45. Hunter, M.P., Ismail, N., Zhang, X., Aguda, B.D., Lee, E.J., Yu, L., Xiao, T., Schafer, J., Lee, M.L., Schmittgen, T.D., Nana-Sinkam, S.P., Jarjoura, D., and Marsh, C.B., PLoS One, 2008, vol. 3, e3694. doi 10.1371/journalpone.0003694

  46. Catuogno, S., Esposito, C.L., Quintavalle, C., Cerchia, L., Condorelli, G., and De Franciscis, V., Cancers (Basel), 2011, vol. 3, pp. 1877–1898. doi 10.3390/cancers3021877

    Article  CAS  Google Scholar 

  47. Saikumar, J., Ramachandran, K., and Vaidya, V.S., Clin. Chem., 2014, vol. 60, pp. 1158–1173. doi 10.1373/clinchem.2013.216044

    Article  CAS  Google Scholar 

  48. Koshiol, J., Wang, E., Zhao, Y., Marincola, F., and Landi, M.T., Cancer Epidemiol. Biomarkers Prev., 2010, vol. 19, pp. 907–911. doi 10.1158/1055-9965.EPI-100071

    Article  CAS  Google Scholar 

  49. Wang, B., Howel, P., Bruheim, S., Ju, J., Owen, L.B., Fodstad, O., and Xi, Y., PLoS One, 2011, vol. 6, e17167. doi 10.1371/journalpone.0017167

  50. Chen, C., Ridzon, D.A., Broomer, A.J., Zhou, Z., Lee, D.H., Nguyen, J.T., Barbisin, M., Xu, N.L., Mahuvakar, V.R., Andersen, M.R., Lao, K.Q., Livak, K.J., and Guegler, K.J., Nucleic Acids Res., 2005, vol. 33, e179. doi 10.1093/nar/gni178

  51. Raymond, C.K., Roberts, B.S., Garrett-Engele, P., Lim, L.P., and Johnson, J.M., RNA, 2005, vol. 11, pp. 1737–1744. doi 10.1261/rna.2148705

    Article  CAS  Google Scholar 

  52. Sharbati-Tehrani, S., Kutz-Lohroff, B., Bergbauer, R., Scholven, J., and Einspanier, R., BMC Mol. Biol., 2008, vol. 9, p. 34. doi 10.1186/1471-2199-9-34

    Article  Google Scholar 

  53. Fu, H.J., Zhu, J., Yang, M., Zhang, Z.Y., Tie, Y., Jiang, H., Sun, Z.X., and Zheng, X.F., Mol. Biotechnol., 2006, vol. 32, pp. 197–204. doi 10.1385/MB:32:3:197

    Article  CAS  Google Scholar 

  54. Ro, S., Park, C., Jin, J., Sanders, K.M., and Yan, W., Biochem. Biophys. Res. Commun., 2006, vol. 351, pp. 756–763. doi 10.1016/jbbrc.2006.10.105

    Article  CAS  Google Scholar 

  55. Pritchard, C.C., Cheng, H.H., and Tewari, M., Nat. Rev. Genet., 2012, vol. 13, pp. 358–369. doi 10.1038/nrg3198

    Article  CAS  Google Scholar 

  56. Mestdagh, P., Hartmann, N., Baeriswyl, L., Andreasen, D., Bernard, N., Chen, C., Cheo, D., D’Andrade, P., DeMayo, M., Dennis, L., Derveaux, S., Feng, Y., Fulmer-Smentek, S., Gerstmayer, B., Gouffon, J., Grimley, C., Lader, E., Lee, K.Y., Luo, S., Mouritzen, P., Narayanan, A., Patel, S., Peiffer, S., Ruberg, S., Schroth, G., Schuster, D., Shaffer, J.M., Shelton, E.J., Silveria, S., Ulmanella, U., Veeramachaneni, V., Staedtler, F., Peters, T., Guettouche, T., Wong, L., and Vandesompele, J., Nat. Methods, 2014, vol. 11, pp. 809–815. doi 10.1038/nmeth.3014

    Article  CAS  Google Scholar 

  57. Metzker, M.L., Nat. Rev. Genet., 2010, vol. 11, pp. 31–46. doi 10.1038/nrg2626

    Article  CAS  Google Scholar 

  58. Lu, C., Meyers, B.C., and Green, P.J., Methods, 2007, vol. 43, pp. 110–117. doi 10.1016/jymeth.2007.05.002

    Article  Google Scholar 

  59. Hafner, M., Landgraf, P., Ludwig, J., Rice, A., Ojo, T., Lin, C., Holoch, D., Lim, C., and Tuschl, T., Methods, 2008, vol. 44, pp. 3–12. doi 10.1016/jymeth.2007.09.009

    Article  CAS  Google Scholar 

  60. Friedlander, M.R., Chen, W., Adamidi, C., Maaskola, J., Einspanier, R., Knespel, S., and Rajewsky, N., Nat. Biotechnol., 2008, vol. 26, pp. 407–415. doi 10.1038/nbt1394

    Article  Google Scholar 

  61. Garber, M., Grabherr, M.G., Guttman, M., and Trapnell, C., Nat. Methods, 2011, vol. 8, pp. 469–477. doi 10.1038/nmeth.1613

    Article  CAS  Google Scholar 

  62. Linsen, S.E., de Wit, E., Janssens, G., Heater, S., Chapman, L., Parkin, R.K., Fritz, B., Wyman, S.K., de Bruijn, E., Voest, E.E., Kuersten, S., Tewari, M., and Cuppen, E., Nat. Methods, 2009, vol. 6, pp. 474–476. doi 10.1038/nmeth0709-474

    Article  CAS  Google Scholar 

  63. Tian, G., Yin, X., Luo, H., Xu, X., Bolund, L., Zhang, X., Gan, S.Q., and Li, N., BMC Biotechnol., 2010, vol. 10, p. 64. doi 10.1186/1472-6750-10-64

    Article  Google Scholar 

  64. Sarkar, D., Parkin, R., Wyman, S., Bendoraite, A., Sather, C., Delrow, J., Godwin, A.K., Drescher, C., Huber, W., Gentleman, R., and Tewari, M., Nucleic Acids Res., 2009, vol. 37, e17. doi 10.1093/ nar/gkn932

    Article  CAS  Google Scholar 

  65. Kroh, E.M., Parkin, R.K., Mitchell, P.S., and Tewari, M., Methods, 2010, vol. 50, pp. 298–301. doi 10.1016/jymeth.2010.01.032

    Article  CAS  Google Scholar 

  66. Qing, T., Yu, Y., Du, T., and Shi, L., Sci. China Life Sci., 2013, vol. 56, pp. 134–142. doi 10.1007/s11427-0134437-9

    Article  CAS  Google Scholar 

  67. Lawrie, C.H., Gal, S., Dunlop, H.M., Pushkaran, B., Liggins, A.P., Pulford, K., Banham, A.H., Pezzella, F., Boultwood, J., Wainscoat, J.S., Hatton, C.S., and Harris, A.L., Br. J. Haematol., 2008, vol. 141, pp. 672–675. doi 10.1111/j.1365-2141.2008.07077x

    Article  Google Scholar 

  68. Chen, X., Ba, Y., Ma, L., Cai, X., Yin, Y., Wang, K., Guo, J., Zhang, Y., Chen, J., Guo, X., Li Q., Li, X., Wang, W., Wang, J., Jiang, X., Xiang, Y., Xu, C., Zheng, P., Zhang, J., Li, R., Zhang, H., Shang, X., Gong, T., Ning, G., Zen, K., and Zhang, C.Y., Cell Res., 2008, vol. 18, pp. 997–1006. doi 10.1038/cr.2008.282

    Article  CAS  Google Scholar 

  69. Skog, J., Wurdinger, T., van Rijn, S., Meijer, D.H., Gainche, L., Sena-Esteves, M., Curry, W.T., Jr., Carter, B.S., Krichevsky, A.M., and Breakefield, X.O., Nat. Cell. Biol., 2008, vol. 10, pp. 1470–1476. doi 10.1038/ncb1800

    Article  CAS  Google Scholar 

  70. Cuk, K., Zucknick, M., Heil, J., Madhavan, D., Schott, S., Turchinovich, A., Arlt, D., Rath, M., Sohn, C., Benner, A., Junkermann, H., Schneeweiss, A., and Burwinkel, B., Int. J. Cancer, 2013, vol. 132, pp. 1602–1612. doi 10.1002/ijc.27799

    Article  CAS  Google Scholar 

  71. Tijsen, A.J., Creemers, E.E., Moerland, P.D., de Windt, L.J., van der Wal, A.C., Kok, W.E., and Pinto, Y.M., Circ. Res., 2010, vol. 106, pp. 1035–1039. doi 10.1161/CIRCRESAHA.110.218297

    Article  CAS  Google Scholar 

  72. Goren, Y., Kushnir, M., Zafrir, B., Tabak, S., Lewis, B.S., and Amir, O., Eur. J. Heart Fail., 2012, vol. 14, pp. 147–154. doi 10.1093/eurjhf/hfr155

    Article  CAS  Google Scholar 

  73. Dickinson, B.A., Semus, H.M., Montgomery, R.L., Stack, C., Latimer, P.A., Lewton, S.M., Lynch, J.M., Hullinger, T.G., Seto, A.G., and van Rooij, E., Eur. J. Heart Fail., 2013, vol. 15, pp. 650–659. doi 10.1093/eurjhf/hft018

    Article  CAS  Google Scholar 

  74. Cheng, Y., Tan, N., Yang, J., Liu, X., Cao, X., He, P., Dong, X., Qin, S., and Zhang, C., Clin. Sci., (Lond), 2010, vol. 119, pp. 87–95. doi 10.1042/CS20090645

    Article  CAS  Google Scholar 

  75. Ai, J., Zhang, R., Li, Y., Pu, J., Lu, Y., Jiao, J., Li, K., Yu, B., Li, Z., Wang, R., Wang, L., Li, Q., Wang, N., Shan, H., and Yang, B., Biochem. Biophys. Res. Commun., 2010, vol. 391, pp. 73–77. doi 10.1016/jbbrc.2009.11.005

    Article  CAS  Google Scholar 

  76. Dorval, V., Nelson, P.T., and Hebert, S.S., Front. Mol. Neurosci., 2013, vol. 6, p. 24. doi 10.3389/fnmol.2013.00024

    Google Scholar 

  77. Jin, X. F., Wu, N., Wang, L., and Li, J., Cell. Mol. Neurobiol., 2013, vol. 33, pp. 601–613. doi 10.1007/s10571-013-9940-9

    Article  CAS  Google Scholar 

  78. Sheinerman, K.S. and Umansky, S.R., Front. Cell. Neurosci., 2013, vol. 7, p. 150. doi 10.3389/fncel.2013.00150

    Article  Google Scholar 

  79. Witwer, K.W., Clin. Chem., 2014, vol. 61, pp. 56–63. doi 10.1373/clinchem.2014.221341

    Article  Google Scholar 

  80. Moldovan, L., Batte, K.E., Trgovcich, J., Wisler, J., Marsh, C.B., and Piper, M., J. Cell. Mol. Med., 2014, vol. 18, pp. 371–390. doi 10.1111/jcmm.12236

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya. Yu. Kiseleva.

Additional information

Original Russian Text © Ya.Yu. Kiseleva, K.G. Ptitsyn, S.P. Radko, V.G. Zgoda, A.I. Archakov, 2016, published in Biomeditsinskaya Khimiya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiseleva, Y.Y., Ptitsyn, K.G., Radko, S.P. et al. Droplet digital PCR, a prospective technological approach to quantitative profiling of microRNA. Biochem. Moscow Suppl. Ser. B 10, 22–30 (2016). https://doi.org/10.1134/S199075081601008X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199075081601008X

Keywords

Navigation