Skip to main content
Log in

The role of inhibition of NO formation in the metabolic recovery of ischemic rat heart by apelin-12

  • Published:
Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry Aims and scope Submit manuscript

Abstract

The effects of apelin-12, a 12 amino acid peptide (H-Arg-Pro-Arg-Leu-Ser-His-Lys-Gly-Pro-Met-Pro-Phe-OH, A-12), on recovery of energy metabolism and cardiac function have been studied in isolated working rat hearts perfused with Krebs buffer (KB) containing 11 mM glucose and subjected to global ischemia and reperfusion. Infusion of 140 μM A-12 before ischemia enhanced myocardial ATP, the total pool of adenine nucleotides (ΣAN = ATP+ADP+AMP) and the energy charge of cardiomyocytes ((ATP + 0.5ADP)/ΣAN) at the end of reperfusion compared with control (KB infusion) and decreased lactate content and lactate/pyruvate ratio in the reperfused myocardium up to the initial values. This was accompanied by improved recovery of coronary flow and cardiac function. Co-administration of A-12 and 100 μM L-NAME (an inhibitor of NO synthases) significantly attenuated the A-12 effects on metabolic and functional recovery of reperfused hearts. These results indicate involvement of NO in mechanisms of cardioprotection that are tightly associated with recovery of energy metabolism in the postischemic heart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Verma, S., Fedak, P.W.M., and Eeisel, R.D., Circulation, 2002, vol. 105, pp. 2332–2336.

    Article  Google Scholar 

  2. Kleinz, M.J. and Davenport, A.P., Pharmacol. Ther., 2005, vol. 107, pp. 198–211.

    Article  CAS  Google Scholar 

  3. Simpkin, J.C., Yellon, D.M., Davidson, S.M., Lim, S.Y., Wynne, A.M., and Smith, C.C., Basic Res. Cardiol., 2007, vol. 102, pp. 518–528.

    Article  CAS  Google Scholar 

  4. Zeng, X.J., Zhang, L.K., Wang, H.X., Lu, L.Q., Ma, L.Q., and Tang, Ch.S., Peptides, 2009, vol. 30, pp. 1144–1152.

    Article  CAS  Google Scholar 

  5. Masri, B., Knibiehler, B., and Audigier, Y., Cell. Signal., 2005, vol. 17, pp. 415–426.

    Article  CAS  Google Scholar 

  6. Smith, C.C., Mocanu, M.M., Bowen, J., Wynne, A.M., Simpkin, J.C., Dixon, R.A., et al. Cardiovasc. Drugs Ther., 2007, vol. 21, pp. 409–414.

    Article  CAS  Google Scholar 

  7. Kleinz, M.J. and Baxter, G.F., Regul. Pept., 2008, vol. 146, pp. 271–277.

    Article  CAS  Google Scholar 

  8. Berry, M.F., Pirolli, T.J., Jayasankar, V., Burdick, J., Morine, K.J., Gardner, T.J., et al. Circulation, 2004, vol. 110, pp. II187–II193.

    Article  Google Scholar 

  9. Szokodi, I., Tavi, P., Foldes, G., Voutilainen-Myllyla, S., Ilves, M., Tokola, H., et al. Circ. Res., 2002, vol. 91, pp. 434–440.

    Article  CAS  Google Scholar 

  10. Hosoya, M., Kawamata, Y., Fukusumi, S., Fujii, R., Habata, Y., Hinuma, S., et al., J. Biol. Chem., 2002, vol. 275, pp. 21061–21067.

    Article  Google Scholar 

  11. Lee, D.K., Saldivia, V.R., Nguyen, T., Cheng, R., George, S.R., and O’Dowd, B.F., Endocrinology, 2005, vol. 146, pp. 231–236.

    Article  CAS  Google Scholar 

  12. Pisarenko, O.I., Shulzhenko, V.S., Pelogeykina, Yu.A., Studneva, I.M., Khatri, D.N., Bespalova, Zh.D., Az’muko, A.A., Sidorova, M.V., and Pal’keeva, M.E., Kardiologiya, 2010, vol. 50, no. 10, pp. 44–49.

    CAS  Google Scholar 

  13. Pisarenko, O.I., Serebryakova, L.I., Pelogeykinam Yu.A., Studneva, I.M., Khatri, D.N., Tskitishvili, O.V., Bespalova, Zh.D., Az’muko, A.A., Sidorova, M.V., and Pal’keeva, M.E., Byul. Eksper. Biol. Med., 2011, vol. 152, no. 7, pp. 86–89.

    Google Scholar 

  14. Shultz, R., Kelm, M., and Heusch, G., Cardiovasc. Res., 2004, vol. 61, pp. 402–413.

    Article  Google Scholar 

  15. Lamprecht, W., Stein, P., Heinz, F., and Weisser, H., in Methods of Enzymatic Analysis, Bergmeyer, H.U., Ed., N.Y.: Academic Press, 1974, pp. 1777–1781.

    Google Scholar 

  16. Jaworek, D., Gruber, W., and Bergmeyer, H.U., in Methods of Enzymatic Analysis, Bergmeyer, H.U., Ed., N.Y.: Academic Press, 1974, pp. 2127–2131.

    Google Scholar 

  17. Bernt, E., Bergmeyer, H.U., and Mollering, H., in Methods of Enzymatic Analysis, Bergmeyer, H.U., Ed., N.Y.: Academic Press, 1974, pp. 1772–1776.

    Google Scholar 

  18. Gutman, I. and Wahlenfeld, A.W.L., in Methods of Enzymatic Analysis, Bergmeyer, H.U., Ed., N.Y.: Academic Press, 1974, pp. 1464–1467.

    Google Scholar 

  19. Czok, R. and Lamprecht, W., in Methods of Enzymatic Analysis, Bergmeyer, H.U., Ed., N.Y.: Academic Press, 1974, pp. 1446–1448.

    Google Scholar 

  20. Tatemoto, K., Takayama, K., Zou, M.X., Kumaki, I., Zhang, W., Kumano, K., et al., Regul. Pept., 2001, vol. 99, pp. 87–92.

    Article  CAS  Google Scholar 

  21. Cheng, X., Cheng, X.S., and Pang, C.C., Eur. J. Pharmacol., 2003, vol. 470, pp. 171–175.

    Article  CAS  Google Scholar 

  22. Ishida, J., Hashimoto, T., Hashimoto, Y., Nishiwaki, S., Iguchi, T., Harada, S., Sugaya, T., Matsuzaki, H., Yamamoto, R., Shiota, N., Okunishi, H., Kihara, M., Umemura, S., Sugiyama, F., Yagami, K., Kasuya, Y., Mochizuki, N., and Fukamizu, A., J. Biol. Chem., 2004, vol. 279, pp. 26274–26279.

    Article  CAS  Google Scholar 

  23. Kasai, A., Shintani, N., Kato, H., Matsuda, S., Gomi, F., Haba, R., Hashimoto, H., Kakuda, M., Tano, Y., and Baba, A., Arterioscler. Thromb. Vasc. Biol., 2008, vol. 28, pp. 1717–1722.

    Article  CAS  Google Scholar 

  24. Japp, A.G., Cruden, N.L., Amer, D.A., Li, V.K.Y., Goudie, E.B., Johnston, N.R., Sharma, S., Neilson, I., Webb, D.J., Megson, I.L., Flapan, A.D., and Newby, D.E., J. Am. Coll. Cardiol., 2008, vol. 52, pp. 908–913.

    Article  CAS  Google Scholar 

  25. Zhong, J.C., et al., Cardiovasc. Res., 2007, vol. 74, pp. 388–395.

    Article  CAS  Google Scholar 

  26. Chun, H.J., Ali, Z.A., Kojima, Y., Kundu, R.K., Sheikh, A.Y., Agrawal, R., Zheng, L., Leeper, N.J., Pearl, N.E., Patterson, A.J., Anderson, J.P., Tsao, Ph.S., Lenardo, M.J., Ashley, E.A., and Quertermous, T., J. Clin. Invest., 2008, vol. 118, pp. 3343–3354.

    CAS  Google Scholar 

  27. Jia, Y.X., Lu, Z.F., Zhang, J., Pan, C.S., Yang, J.H., Zhao, J., et al., Peptides, 2007, vol. 28, pp. 2023–2029.

    Article  CAS  Google Scholar 

  28. Hausenloy, D.J. and Yellon, D.M., Cardiovas. Res., 2004, vol. 61, pp. 448–460.

    Article  CAS  Google Scholar 

  29. Maguire, J.J., Kleinz, M.J., Pitkin, S.L., and Davenport, A.P., Hypertension, 2009, vol. 54, pp. 598–604.

    Article  CAS  Google Scholar 

  30. Jaszberenyi, M., Bujdoso, E., and Telegdy, G., Neuroscience, 2004, vol. 129, pp. 811–816.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. I. Pisarenko.

Additional information

Original Russian Text © O.I. Pisarenko, Yu.A. Pelogeykina, V.S. Shulzhenko, I.M. Studneva, Zh.D. Bespalova, A.A. Az’muko, M.V. Sidorova, M.E. Pal’keeva, 2012, published in Biomeditsinskaya Khimiya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pisarenko, O.I., Pelogeykina, Y.A., Shulzhenko, V.S. et al. The role of inhibition of NO formation in the metabolic recovery of ischemic rat heart by apelin-12. Biochem. Moscow Suppl. Ser. B 6, 55–60 (2012). https://doi.org/10.1134/S199075081201012X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199075081201012X

Keywords

Navigation