Skip to main content
Log in

Molecular modeling of acetylcholinesterase interaction with irreversible and reversible organophosphorus inhibitors

  • Published:
Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry Aims and scope Submit manuscript

Abstract

Three-dimensional (3D) Quantitative Structure-Activity Relationship models were designed for irreversible and reversible acetylcholinesterase inhibitors by molecular modeling methods. In the case of irreversible inhibitors CoMFA (comparative molecular fields analysis) or CoMSIA (comparative molecular similarity indices analysis) descriptors in combination with HYBOT 3D fields provide more statistically valid 3D-QSAR models. This indicates importance of donor-acceptor interactions for irreversible acetylcholinesterase inhibition. In the case of reversible organophosphorous inhibitors a good quality model for structure-activity relationships was developed using CoMFA fields. The obtained models have good predictive power and can be used for estimation of inhibitory activity of new organophosphorous compounds that in turn correlates with toxicity of these compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Giacobini, E., Neurochem. Res., 2000, vol. 25, pp. 1185–1190.

    Article  CAS  Google Scholar 

  2. Marquis, J.K., Biochem. Pharmacol., 1990, vol. 40, pp. 1071–1076.

    Article  CAS  Google Scholar 

  3. Roy Fukuto, T., Environmental Health Perspectives, 1990, vol. 87, pp. 245–254.

    Article  Google Scholar 

  4. Marrs, T.C., Pharmacol. Ther., 1993, vol. 58, pp. 51–66.

    Article  CAS  Google Scholar 

  5. Guo, J.X., Wu, J.J., Wright, J.B., and Lushington, G.H., Chem. Res. Toxicol., 2006, vol. 19, pp. 209–216.

    Article  CAS  Google Scholar 

  6. Hornberg, A., Tunemalm, A.K., and Ekstrom, F., Biochemistry, 2007, vol. 46, pp. 4815–4825.

    Article  Google Scholar 

  7. Reiner, E., Bull. Org. Mond. Sante., 1971, vol. 44, pp. 109–112.

    CAS  Google Scholar 

  8. Bajgar, J., J. Med. Chem. Def., 2004, vol. 1, pp. 1–16.

    Google Scholar 

  9. Harel, M., Schalk, I., Ehret-Sabatier, L., Bouet, F., Goeldner, M., Hirth, C., Axelsen, P.H, Silman, I., and Sussman, J.L., Proc. Natl. Acad. Sci. USA, 1993, vol. 90, pp. 9031–9035.

    Article  CAS  Google Scholar 

  10. Kryger, G., Silman, I., and Sussman, J.L., Structure, 1999, vol. 7, pp. 297–307.

    Article  CAS  Google Scholar 

  11. Kaur, J. and Zhang, M.Q., Curr. Med. Chem., 2000, vol. 7, pp. 273–294.

    CAS  Google Scholar 

  12. El Yazal, J., Rao, S.N., Mehl, A., and Slikker, W., Jr., Toxicol. Sci., 2001, vol. 63, pp. 223–232.

    Article  Google Scholar 

  13. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., and Bourne, P.E., Nucleic Acids Res., 2000, vol. 28, pp. 235–242.

    Article  CAS  Google Scholar 

  14. Bernard, P., Kireev, D.B., Chretien, J.R., Fortier, P.L., and Coppet, L., J. Mol. Model., 1998, vol. 4, pp. 323–334.

    Article  CAS  Google Scholar 

  15. Hirashima, A., Kuwano, E., and Eto, M., Bioorg. Med. Chem., 2000, vol. 8, pp. 653–656.

    Article  CAS  Google Scholar 

  16. Recanatini, M., Cavalli, A., Belluti, F., Piazzi, L., Rampa, A., Bisi, A., Gobbi, S., Valenti, P., Andrisano, V., Bartolini, M., and Cavrini, V., J. Med. Chem., 2000, vol. 43, pp. 2007–2018.

    Article  CAS  Google Scholar 

  17. Hosea, N.A., Radic, Z., Tsigelny, I., Berman, H.A., Quinn, D.M., and Taylor, P., Biochemistry, 1996, vol. 35, pp. 10995–11004.

    Article  CAS  Google Scholar 

  18. Taylor, P., in The Pharmacological Basis of Therapeutics, Hardman, J.G. and Limbird, L.E., eds., New York: McGraw-Hill, 2001, pp. 175–191.

    Google Scholar 

  19. Maxwell, D.M., Brecht, K.M., Koplovitz, I., and Sweeney, R.E.,Arch. Toxicol., 2006, vol. 80, pp. 756–760.

    Article  CAS  Google Scholar 

  20. Raevsky, O.A., Chistyakov, V.V., Agabekyan, R.S., Sapegin, A.M., and Zefirov, N.S., Bioorgan. Khim., 1990, vol. 16, pp. 1509–1522.

    Google Scholar 

  21. Kuzmin, V.E., Artemenko, A.G., and Muratov, E.N.,J. Comput. Aided Mol. Des., 2008, vol. 22, pp. 403–421.

    Article  CAS  Google Scholar 

  22. Raevsky, O.A. and Skvortsov, V.S., J. Comput. Aided Mol. Des., 2002, vol. 16, pp. 1–10.

    Article  CAS  Google Scholar 

  23. Ordentlich, A., Barak, D., Kronman, C., Benschop, H.P., De Jong, L.P., Ariel, N., Barak, R., Segall, Y., Velan, B., and Shafferman, A., Biochemistry, 1999, vol. 38, pp. 3055–3066.

    Article  CAS  Google Scholar 

  24. Sussman, J.L., Harel, M., Frolow, F., Oefner, C., Goldman, A., Toker, L., and Silman, I., Science, 1991, vol. 253, pp. 872–879.

    Article  CAS  Google Scholar 

  25. Mastrantonio, G., Mack, H.G., Della Védova, C.O., J. Mol. Model., 2008, vol. 14, pp. 813–821.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Tikhonova.

Additional information

Original Russian Text © O.V. Tikhonova, V.S. Skvortsov, O.A. Raevsky, 2010, published in Biomeditsinskaya Khimiya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tikhonova, O.V., Skvortsov, V.S. & Raevsky, O.A. Molecular modeling of acetylcholinesterase interaction with irreversible and reversible organophosphorus inhibitors. Biochem. Moscow Suppl. Ser. B 4, 342–352 (2010). https://doi.org/10.1134/S1990750810040049

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990750810040049

Keywords

Navigation