Skip to main content
Log in

Comparison of algorithms for prediction of related proteins using the method of phylogenetic profiles

  • Proteomics and Bioinformatics
  • Published:
Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry Aims and scope Submit manuscript

Abstract

Computational interactomics deals with prediction of functionally related proteins. One approach for solving this problem using comparative genomics consists in analysis of similarities between phylogenetic profiles of proteins. In contrast to most methods, which predict only pairwise interactions between proteins, in the present work we have applied the cluster analysis techniques in order to find modules of functionally related proteins. We have performed the cluster analysis of phylogenetic profiles of E. coli proteins using several clustering techniques and various modes for estimation of distances between profiles. We report here, that the best correspondence in the composition of resultant clusters to known metabolic pathways is achieved using Ward’s clustering together with Hamming’s distance. The proposed technique of assessing predictions of the modules of functionally related proteins can be used for comparative analysis of different algorithms for computational interactomics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pellegrini, M., Marcotte, E.M., Thompson, M.J., Eisenberg, D., and Yeates, T.O., Proc. Natl. Acad. Sci. USA, 1999, vol. 96, pp. 4285–4288.

    Article  CAS  Google Scholar 

  2. Overbeek, R., Fonstein, M., D’souza, M., Pusch, G.D., and Maltsev N., Proc. Natl. Acad. Sci. USA, 1999, vol. 96, pp. 2896–2901.

    Article  CAS  Google Scholar 

  3. Marcotte, C.J., and Marcotte, E.M., Appl. Bioinformatics, 2002, vol. 1, pp. 93–100.

    Google Scholar 

  4. Snel, B., and Huynen, M.A., Genome Res., 2004, vol. 14, pp. 391–397.

    Article  CAS  Google Scholar 

  5. Chen, J., and Yuan, B., Bioinformatics, 2006, vol. 22, pp. 2283–2290.

    Article  CAS  Google Scholar 

  6. Vinogradov, A.E., Bioinformatics, 2008, vol. 24, pp. 2814–2817.

    Article  CAS  Google Scholar 

  7. Dittrich, M.T., Klau, G.W., Rosenwald, A., Dandekar, T., and Muller, T., Bioinformatics, 2008, vol. 24, pp. 223–231.

    Article  Google Scholar 

  8. Ogata, H., Goto, S., Sato, K., Fujibuchi, W., Bono, H., and Kanehisa, M., Nucleic Acids Res., 1999, vol. 27, pp. 29–34.

    Article  CAS  Google Scholar 

  9. Jothi, R., Przytycka, T.M., and Aravind, L., BMC Bioinformatics, 2007, vol. 8, p. 173.

    Article  Google Scholar 

  10. Sun, J., Xu, J., Liu, Z., Liu, Q., Zhao, A., Shi, T., and Li, Y., Bioinformatics, 2005, vol. 21, pp. 3409–3415.

    Article  CAS  Google Scholar 

  11. Tatusov, R.L., Fedorova, N.D., Jackson, J.D., Jacobs, A.R., Kiryutin, B., Koonin, E.V., Krylov, D.M., Mazumder, R., Mekhedov, S.L., et al., BMC Bioinformatics, 2003, vol. 4, p. 41.

    Article  Google Scholar 

  12. Wu, J., Kasif, S., and DeLisi, C., Bioinformatics, 2003, vol. 19, pp. 1524–1530.

    Article  CAS  Google Scholar 

  13. Kaufman, L., and Rousseeuw, P. J., Finding Groups in Data, Wiley-Interscience, 2005.

  14. Koonin, E.V., Mushegian, A.R., and Bork, P., Trends Genet., 1996, vol. 12, pp. 334–336.

    Article  CAS  Google Scholar 

  15. Karimpour-Fard, A., Leach, S.M., Gill, R.T., and Hunter, L.E., BMC Bioinformatics, 2008, vol. 9, pp. 397.

    Article  Google Scholar 

  16. Strong, M., Graeber, T.G., Beeby, M., Pellegrini, M., Thompson, M.J., Yeates, T.O., and Eisenberg, D., Nucleic Acids Res., 2003, vol. 31, pp. 7099–7109.

    Article  CAS  Google Scholar 

  17. Wu, J., Mellor, J.C., and DeLisi, C., Genome Inform., 2005, vol. 16, pp. 142–149.

    CAS  Google Scholar 

  18. Marcotte, E.M., Xenarios, I., van Der Bliek, A.M., and Eisenberg, D., Proc. Natl. Acad. Sci. USA, 2000, vol. 97, pp. 12115–12120.

    Article  CAS  Google Scholar 

  19. Barker, D. and Pagel, M., PLoS Comput. Biol., 2005, vol. 1, p. e3.

  20. Archakov, A.I., Govorun, V.M., Dubanov, A.V., Ivanov, Y.D., Veselovsky, A.V., Lewi, P., and Janssen, P., Proteomics, 2003, vol. 3, pp. 380–391.

    Article  CAS  Google Scholar 

  21. Date, S.V., and Marcotte, E.M., Nat. Biotechnol., 2003, vol. 21, pp. 1055–1062.

    Article  CAS  Google Scholar 

  22. Mirkin, B.G., Fenner, T.I., Galperin, M.Y., and Koonin, E.V., BMC Evol. Biol., 2003, vol. 3, p. 2.

    Article  Google Scholar 

  23. Loganantharaj, R., and Atwi, M., BMC Bioinformatics, 2007, vol. 8, Suppl 7, p. S25.

    Article  Google Scholar 

  24. Yamada, T., Kanehisa, M., and Goto, S., BMC Bioinformatics, 2006, vol. 7, p. 130.

    Article  CAS  Google Scholar 

  25. Kensche, P.R., van Noort, V., Dutilh, B.E., and Huynen, M.A., (2008) J. R. Soc. Interface, 2008, vol. 5, pp. 151–170.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Pyatnitskiy.

Additional information

Original Russian Text © M.A. Pyatnitskiy, A.V. Lisitsa, A I. Archakov, 2010, published in Biomeditsinskaya Khimiya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pyatnitskiy, M.A., Lisitsa, A.V. & Archakov, A.I. Comparison of algorithms for prediction of related proteins using the method of phylogenetic profiles. Biochem. Moscow Suppl. Ser. B 4, 42–48 (2010). https://doi.org/10.1134/S1990750810010063

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990750810010063

Key words

Navigation