Skip to main content
Log in

pH Changes in the Mitochondrial Matrix and Cytosol under Glutamate Deregulation of Ca2+ Homeostasis in Cultured Rat Hippocampal Neurons

  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

The effect of high concentrations of glutamate (Glu) on primary cultures of neurons from the rat brain led to a strong depolarization of mitochondria, which developed synchronously with a secondary increase in the intracellular free Ca2+ concentration (delayed calcium deregulation, DCD). Simultaneously with measurements of the intracellular free Ca2+ concentration ([Ca2+]i), pH was measured in the mitochondrial matrix (pHm) and cytosol (pHc) of neurons when exposed to a toxic dose of Glu (100 µM). For this purpose, pH-sensitive green fluorescent protein mtYFP in mitochondria and pH-sensitive red fluorescent protein mKate in cytosol were expressed in primary cultures from the hippocampus of newborn rats. The resulting neuronal culture was loaded with the Ca2+ indicator Fura-FF; [Ca2+]i, pHm and pHc were simultaneously measured in those neurons that expressed both mtYFP and mKate. It was found that during the first phase of the [Ca2+]i response to Glu, when partial depolarization of mitochondria was observed, there was an increase in the pH gradient between the mitochondrial matrix and the cytosol (ΔpH), which compensated for the decrease in the electrical component of the mitochondrial potential (∆Ψm), thereby maintaining the constancy of the electrochemical potential of mitochondria. The development of DCD led to an abrupt decrease in ∆Ψm and ΔpH in the soma of neurons; however, a complete collapse of ΔpH was not observed. This may mean that DCD was not caused by a nonspecific megapore in the inner mitochondrial membrane (mPTP), as is commonly believed. Alternatively, part of the mitochondria in the soma of neurons could retain the barrier properties of the inner membrane and did not form mPTP even with the development of DCD and reaching a high [Ca2+]i plateau.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Wang Y., Qin Z. 2010. Molecular and cellular mechanisms of excitotoxic neuronal death. Apoptosis. 15 (11), 1382–1402. https://doi.org/10.1007/s10495-010-0481-0

    Article  CAS  PubMed  Google Scholar 

  2. Zhou Y., Danbolt N.C. 2014. Glutamate as a neurotransmitter in the healthy brain. J. Neural Transm. 121 (8), 799–817. https://doi.org/10.1007/s00702-014-1180-8

    Article  CAS  PubMed  Google Scholar 

  3. Gudiño-Cabrera G., Ureña-Guerrero M.E., Rivera-Cervantes M.C., Feria-Velasco A.I., Beas-Zárate C. 2014. Excitotoxicity triggered by neonatal monosodium glutamate treatment and blood–brain barrier function. Arch. Med. Res. 45 (8), 653–659. https://doi.org/10.1016/j.arcmed.2014.11.014

    Article  CAS  PubMed  Google Scholar 

  4. Jewett B.E., Thapa B. 2021. Physiology, NMDA Receptor. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing.

  5. Zöllner J.P., Schmitt F.C., Rosenow F., Kohlhase K., Seiler A., Strzelczyk A., Stefan H. 2021. Seizures and epilepsy in patients with ischaemic stroke. Neurol. Res. Pract. 3 (1), 63. https://doi.org/10.1186/S42466-021-00161-W

    Article  PubMed  PubMed Central  Google Scholar 

  6. Verkhratsky A., Kirchhoff F. 2007. NMDA receptors in glia. Neuroscientist. 13 (1), 28–37. https://doi.org/10.1177/1073858406294270

    Article  CAS  PubMed  Google Scholar 

  7. Gerkau N.J., Rakers C., Petzold G.C., Rose C.R. 2017. Differential effects of energy deprivation on intracellular sodium homeostasis in neurons and astrocytes. J. Neurosci. Res. 95 (11), 2275–2285. https://doi.org/10.1002/jnr.23995

    Article  CAS  PubMed  Google Scholar 

  8. Huo Y., Feng X., Niu M., Wang L., Xie Y., Wang L., Ha J., Cheng X., Gao Z., Sun Y. 2021. Therapeutic time windows of compounds against NMDA receptors signaling pathways for ischemic stroke. J. Neurosci. Res. 99 (12), 3204–3221. https://doi.org/10.1002/JNR.24937

    Article  CAS  PubMed  Google Scholar 

  9. Tymianski M., Charlton M.P., Carlen P.L., Tator C.H. 1993. Secondary Ca2+ overload indicates early neuronal injury which precedes staining with viability indicators. Brain Res. 607 (1–2), 319–323. https://doi.org/10.1016/0006-8993(93)91523-U

    Article  CAS  PubMed  Google Scholar 

  10. Nicholls D.G., Ward M.W. 2000. Mitochondrial membrane potential and neuronal glutamate excitotoxicity: Mortality and millivolts. Trends Neurosci. 23 (4), 166–174. https://doi.org/10.1016/S0166-2236(99)01534-9

    Article  CAS  PubMed  Google Scholar 

  11. Khodorov B. 2004. Glutamate-induced deregulation of calcium homeostasis and mitochondrial dysfunction in mammalian central neurones. Progr. Biophys. Mol. Biol. 86 (2), 279–351. https://doi.org/10.1016/j.pbiomolbio.2003.10.002

    Article  CAS  Google Scholar 

  12. Abramov A.Y., Duchen M.R. 2010. Impaired mitochondrial bioenergetics determines glutamate-induced delayed calcium deregulation in neurons. Biochim. Biophys. Acta. 1800 (3), 297–304. https://doi.org/10.1016/j.bbagen.2009.08.002

  13. Nicholls D.G., Budd S.L. 2000. Mitochondria and neuronal survival. Physiol. Rev. 80 (1), 315–360.

    Article  CAS  Google Scholar 

  14. Duchen M.R. 2012. Mitochondria, calcium-dependent neuronal death and neurodegenerative disease. Pflügers Arch. 464 (1), 111–121. https://doi.org/10.1007/s00424-012-1112-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Plotegher N., Filadi R., Pizzo P., Duchen M.R. 2021. Excitotoxicity revisited: Mitochondria on the verge of a nervous breakdown. Trends Neurosci. 44 (5), 342–351. https://doi.org/10.1016/J.TINS.2021.01.001

    Article  CAS  PubMed  Google Scholar 

  16. Surin A.M., Gorbacheva L.R., Savinkova I.G., Sharipov R.R., Khodorov B.I., Pinelis V.G. 2014. Study on ATP concentration changes in cytosol of individual cultured neurons during glutamate-induced deregulation of calcium homeostasis. Biochemistry (Moscow). 79 (2), 146–157. https://doi.org/10.1134/S0006297914020084

    Article  CAS  Google Scholar 

  17. Budd S.L., Nicholls D.G. 1996. A reevaluation of the role of mitochondria in neuronal Ca2+ homeostasis. J. Neurochem. 66 (1), 403–411. https://doi.org/10.1046/J.1471-4159.1996.66010403.X

    Article  CAS  PubMed  Google Scholar 

  18. Pinelis V.G., Bykova L.P., Bogachev A.P., Isaev N.K., Viktorov I.V, Khodorov B.I. 1997. Toxic effect of glutamate on cultured cerebellar granular cells reduces the intracellular level of ATP. The role of Ca2+ ions. Bull. Exp. Biol. Med. 123 (2), 162–164.

    Article  CAS  Google Scholar 

  19. Ioudina M., Uemura E., Greenlee H.W. 2004. Glucose insufficiency alters neuronal viability and increases susceptibility to glutamate toxicity. Brain Res. 1004 (1–2), 188–192. https://doi.org/10.1016/J.BRAINRES.2003.12.046

    Article  CAS  PubMed  Google Scholar 

  20. Sorokina E.G., Reutov V.P., Senilova Y.E., Khodorov B.I., Pinelis V.G. 2007. Changes in ATP content in cerebellar granule cells during hyperstimulation of glutamate receptors: possible role of NO and nitrite ions. Bull. Exp. Biol. Med. 143 (4), 442–445. https://doi.org/10.1007/S10517-007-0151-6

    Article  CAS  PubMed  Google Scholar 

  21. Surin A.M., Khiroug S.S., Gorbacheva L.R., Khodorov B.I., Pinelis V.G., Khiroug L. 2013. Comparative analysis of cytosolic and mitochondrial ATP synthesis in embryonic and postnatal hippocampal neuronal cultures. Front. Mol. Neurosci. 5, 102. https://doi.org/10.3389/fnmol.2012.00102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hwang S.-M., Koo N.-Y., Jin M., Davies A.J., Chun G.-S., Choi S.-Y., Kim J.-S., Park K. 2011. Intracellular acidification is associated with changes in free cytosolic calcium and inhibition of action potentials in rat trigeminal ganglion. J. Biol. Chem. 286 (3), 1719–1729.

    Article  CAS  Google Scholar 

  23. Wang G.J., Randall R.D., Thayer S.A. 1994. Glutamate-induced intracellular acidification of cultured hippocampal neurons demonstrates altered energy metabolism resulting from Ca2+ loads. J. Neurophysiol. 72 (6), 2563–2569. https://doi.org/10.1152/JN.1994.72.6.2563

    Article  CAS  PubMed  Google Scholar 

  24. Bolshakov A.P., Mikhailova M.M., Szabadkai G., Pinelis V.G., Brustovetsky N., Rizzuto R., Khodorov B.I. 2008. Measurements of mitochondrial pH in cultured cortical neurons clarify contribution of mitochondrial pore to the mechanism of glutamate induced delayed Ca2+ deregulation. Cell Calcium. 43 (6), 602–614. https://doi.org/10.1016/j.ceca.2007.10.005

    Article  CAS  PubMed  Google Scholar 

  25. Chudakov D.M., Matz M.V., Lukyanov S., Lukyanov K.A. 2010. Fluorescent proteins and their applications in imaging living cells and tissues. Physiol. Rev. 90 (3), 1103–1163. https://doi.org/10.1152/PHYSREV.00038.2009

    Article  CAS  PubMed  Google Scholar 

  26. Okumoto S. 2010. Imaging approach for monitoring cellular metabolites and ions using genetically encoded biosensors. Curr. Opin. Biotechnol. 21 (1), 45–54. https://doi.org/10.1016/J.COPBIO.2010.01.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nicholls D.G., Ferguson S.J. 2013. Bioenergetics. 4th ed. Middletown, USA: Acad. Press. https://doi.org/10.1017/CBO9781107415324.004

    Book  Google Scholar 

  28. Skulachev V.P., Bogachev A.V., Kasparinsky F.O. 2011. Membrannaya bioenergetika (Membrane bioenergetics). Moscow: Publishing House of Moscow State University.

  29. Surin A.M., Krasilnikova I.A., Pinelis V.G., Khodo-rov B.I. 2014. Investigation of the relationship between glutamate-induced delayed Ca2+ deregulation, mitochondrial depolarization and subsequent neuron death. Patogenez (Rus.). 12 (4), 40–46.

    Google Scholar 

  30. Shcherbo D., Merzlyak E.M., Chepurnykh T.V., Fradkov A.F., Ermakova G.V., Solovieva E.A., Lukyanov K.A., Bogdanova E.A., Zaraisky A.G., Lukyanov S., Chudakov D.M. 2007. Bright far-red fluorescent protein for whole-body imaging. Nat. Methods. 4 (9), 741–746. https://doi.org/10.1038/NMETH1083

    Article  CAS  PubMed  Google Scholar 

  31. Buckman J.F., Hernandez H., Kress G.J., Votyakova T.V., Pal S., Reynolds I.J. 2001. MitoTracker labeling in primary neuronal and astrocytic cultures: Influence of mitochondrial membrane potential and oxidants. J. Neurosci. Methods. 104 (2), 165–176. https://doi.org/10.1016/S0165-0270(00)00340-X

    Article  CAS  PubMed  Google Scholar 

  32. Duchen M.R., Surin A., Jacobson J. 2003. Imaging mitochondrial function in intact cells. Methods Enzymol. 361, 353–389. https://doi.org/10.1016/S0076-6879(03)61019-0

    Article  CAS  PubMed  Google Scholar 

  33. Keminer O., Peters R. 1999. Permeability of single nuclear pores. Biophys. J. 77 (1), 217–228. https://doi.org/10.1016/S0006-3495(99)76883-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mattaj I.W., Englmeier L. 1998. Nucleocytoplasmic transport: The soluble phase. Annu. Rev. Biochem. 67, 265–306. https://doi.org/10.1146/annurev.biochem.67.1.265

    Article  CAS  PubMed  Google Scholar 

  35. Brustovetsky N., Dubinsky J.M. 2000. Dual responses of CNS mitochondria to elevated calcium. J. Neurosci. 20 (1), 103–113.

    Article  CAS  Google Scholar 

  36. Sharipov R.R., Krasilnikova I.A., Pinelis V.G., Gorbacheva L.R., Surin A.M. 2018. Study of the mechanism of the neuron sensitization to the repeated glutamate challenge. Biochem. (Mosc.) Suppl. Ser. A Membr. Cell Biol. 12 (4), 369–381.

    Google Scholar 

  37. Khodorov B.I., Storozhevykh T.P., Surin A.M., Sorokina E.G., Yuravichus A.I., Borodin A.V., Vinskaya N.P., Haspekov L.G., Pinelis V.G. 2001. The leading role of mitochondrial depolarization in the mechanism of glutamate-induced disorder in Ca2+-homeostasis. Ross. Fiziol. Zh. Im. I. M. Sechenova (Rus.). 87 (4), 459–467.

    CAS  Google Scholar 

  38. Abramov A.Y., Duchen M.R. 2008. Mechanisms underlying the loss of mitochondrial membrane potential in glutamate excitotoxicity. Biochim. Biophys. Acta. 1777 (7–8), 953–964. https://doi.org/10.1016/j.bbabio.2008.04.017

  39. Kiedrowski L. 1999. N-methyl-D-aspartate excitotoxicity: Relationships among plasma membrane potential, Na+/Ca2+ exchange, mitochondrial Ca2+ overload, and cytoplasmic concentrations of Ca2+, H+, and K+. Mol. Pharmacol. 56 (3), 619–632.

    Article  CAS  Google Scholar 

  40. Toth A., Meyrat A., Stoldt S., Santiago R., Wenzel D., Jakobs S., von Ballmoos C., Ott M. 2020. Kinetic coupling of the respiratory chain with ATP synthase, but not proton gradients, drives ATP production in cristae membranes. Proc. Natl. Acad. Sci. USA. 117 (5), 2412–2421. https://doi.org/10.1073/pnas.1917968117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bernardi P. 1999. Mitochondrial transport of cations: Channels, exchangers, and permeability transition. Physiol. Rev. 79 (4), 1127–1155. https://doi.org/10.1038/370621a0

    Article  CAS  PubMed  Google Scholar 

  42. Dubinin M.V., Adakeeva S.I., Samartsev V.N. 2013. Long-chain α,ω-dioic acids as inducers of cyclosporin A-insensitive nonspecific permeability of the inner membrane of liver mitochondria loaded with calcium or strontium ions. Biochemistry (Moscow). 78 (4), 412–417. https://doi.org/10.1134/S000629791304010X

    Article  CAS  Google Scholar 

  43. Wabnits A.V., Storozhevykh T., Senilova Y.E., Pinelis V.G., Khodorov B.I. 2005. The permeability transition pore is not a prerequisite for glutamate-induced calcium deregulation and mitochondrial depolarization in brain neurons. Biologich. membrany (Rus.). 22 (4), 346–350.

  44. Bauer T.M., Murphy E. 2020. Role of mitochondrial calcium and the permeability transition pore in regulating cell death. Circ. Res. 126 (2), 280–293. https://doi.org/10.1161/CIRCRESAHA.119.316306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Carinci M., Vezzani B., Patergnani S., Ludewig P., Lessmann K., Magnus T., Casetta I., Pugliatti M., Pinton P., Giorgi C. 2021. Different roles of mitochondria in cell death and inflammation: Focusing on mitochondrial quality control in ischemic stroke and reperfusion. Biomedicines. 9 (2), 1–28. https://doi.org/10.3390/BIOMEDICINES9020169

    Article  Google Scholar 

  46. Abramov A.Y., Berezhnov A. V., Fedotova E.I., Zinchenko V.P., Dolgacheva L.P. 2017. Interaction of misfolded proteins and mitochondria in neurodegenerative disorders. Biochem. Soc. Trans. 45 (4), 1025–1033. https://doi.org/10.1042/BST20170024

    Article  CAS  PubMed  Google Scholar 

  47. Chalmers S., Nicholls D.G. 2003. The relationship between free and total calcium concentrations in the matrix of liver and brain mitochondria. J. Biol. Chem. 278 (21), 19 062–19 070. https://doi.org/10.1074/jbc.M212661200

    Article  CAS  Google Scholar 

Download references

Funding

This work was carried out according to the plans of State tasks of the Ministry of Health of the Russian Federation (project no. AAAAA 19-119012590191-3) and the Ministry of Science and Higher Education of the Russian Federation (project no. FGFU-2022-0012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Surin.

Ethics declarations

The authors declare that they have no conflict of interest.

All experimental procedures on animals were performed in accordance with ethical principles and regulatory documents recommended by the European Scientific Foundation (ESF) and the Declaration on humane treatment of animals and in accordance with the Order of the Ministry of Health and Social Development of Russia no. 708n dated 23.08.2010 “On approval of the rules of laboratory practice”.

Additional information

Translated by E. Puchkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Surin, A.M., Gorbacheva, L.R., Savinkova, I.G. et al. pH Changes in the Mitochondrial Matrix and Cytosol under Glutamate Deregulation of Ca2+ Homeostasis in Cultured Rat Hippocampal Neurons. Biochem. Moscow Suppl. Ser. A 16, 236–245 (2022). https://doi.org/10.1134/S1990747822040079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747822040079

Keywords

Navigation