Skip to main content
Log in

The Role of the Phosphate Carrier in the Ionophore Uncoupling Action of ω-Hydroxypalmitic Acid in Liver Mitochondria

  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

This paper examines the uncoupling effect of ω-hydroxypalmitic acid (HPA) on liver mitochondria energized by oxidation of succinate. It was shown that HPA more effectively stimulates respiration of mitochondria in the case of incubation in a medium containing potassium chloride, which indicates the ability of HPA to exert an ionophore effect on mitochondria associated with the transport of potassium and/or Tris ions into the matrix of organelles. It was suggested that the phosphate carrier of the inner mitochondrial membrane can be involved in the ionophore action of HPA. We have shown that inorganic phosphate (Pi), a phosphate carrier substrate, has a significant inhibitory effect on HPA-induced stimulation of respiration in liver mitochondria. In addition, Pi inhibits HPA-induced swelling of organelles caused by the transport of potassium and/or Tris ions into the mitochondrial matrix and also reduces the efficiency of HPA as an inducer of a decrease in the transmembrane potential (Δψ) of liver mitochondria. The inhibitors of the phosphate carrier, N-ethylmaleimide (NEM) and iminodi(methylene)phosphonate (IDMP), have a similar effect. It was shown that, upon stimulation of mitochondrial respiration by 30 μM HPA, the recoupling effects of Pi, NEM, and IDMP are 71 ± 8.3%, 56 ± 6.1%, and 34 ± 2.7%, respectively. Noteworthy, these ligands of the phosphate carrier have no effect on the protonophore effect of HPA. Thus, we conclude that the phosphate carrier of liver mitochondria takes part in the ionophore action of HPA, possibly facilitating the transfer of the HPA anion from the inner monolayer of the inner membrane to its outer monolayer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Wojtczak L. 1974. Effect of fatty acids and acyl-CoA on the permeability of mitochondrial membranes to monovalent cations. FEBS Lett. 44, 25–30.

    Article  CAS  Google Scholar 

  2. Kocherginsky N.M., Osak I.S., Demochkin V.V., Rubailo V.L. 1987. Physico-chemical mechanism of ionophoric activity of fatty acids as stimulants of transmembrane monovalent cation exchange. Biol. membrany (Rus.). 4, 838–848.

  3. Cooper C.E., Wrigglesworth J.M., Nicholls P. 1990. The mechanism of potassium movement across the liposomal membrane. Biochem. Biophys. Res. Commun. 173, 1008–1012.

    Article  CAS  Google Scholar 

  4. Sharpe M.A., Cooper C.E., Wrigglesworth J.M. 1994. Transport of K+ and cations across phospholipid membranes by nonesterified fatty acids. J. Membr. Biol. 141, 21–28.

    Article  CAS  Google Scholar 

  5. Schӧnfeld P., Wieckowski M.R., Wojtczak L. 2000. Long-chain fatty acid-promoted swelling of mitochondria: further evidence for the protonophoric effect of fatty acids in the inner mitochondrial membrane. FEBS Lett. 471, 108–112.

    Article  Google Scholar 

  6. Schönfeld P., Gerke S., Bohnensack R., Wojtczak L. 2003. Stimulation potassium cycling in mitochondria by long-chain fatty acid. Biochim. Biophys. Acta. 1604, 125–133.

    Article  Google Scholar 

  7. Severin F.F., Severina I.I., Antonenko Y.N., Rokitskaya T.I., Cherepanov D.A., Mokhova E.N., Vyssokikh M.Y., Pustovidko A.V., Markova O.V., Yaguzhinsky L.S., Korshunova G.A., Sumbatyan N.V., Skulachev M.V., Skulachev V.P. 2010. Penetrating cation/fatty acid anion pair as a mitochondria-targeted protonophore. Proc. Natl. Acad. Sci. USA. 107, 663–668.

    Article  CAS  Google Scholar 

  8. Skulachev V.P. 1998. Uncoupling: New approaches to an old problem of bioenergetics. Biochim. Biophys. Acta. 1363, 100–124.

    Article  CAS  Google Scholar 

  9. Skulachev V.P., Bogachev A.V., Kasparinsky F.O. 2010. Membrannaya bioenergetika (Membrane Bioenergtics). M.: Moscow University Press.

  10. Samartsev V.N., Smirnov A.V., Zeldi I.P., Markova O.V., Mokhova E.N., Skulachev V.P. 1997. Involved of aspartate/glutamate antiporter in fatty acid-induced uncoupling of liver mitochondria. Biochim. Biophys. Acta. 1339, 251–257.

    Article  Google Scholar 

  11. Semenova A.A., Samartsev V.N., Pavlova S.I., Dubinin M.V. 2019. ω-Hydroxypalmitic and α,ω-hexadecanedioic acids as activators of free respiration and inhibitors of H2O2 generation in liver mitochondria. Biol. membrany (Rus.). 36, 428–438.

  12. Bertholet A.M., Chouchani E.T., Kazak L., Angelin A., Fedorenko A., Long J.Z., Vidoni S., Garrity R., Cho J., Terada N., Wallace D.C., Spiegelman B.M., Kirichok Y. 2019. H+ transport is an integral function of the mitochondrial ADP/ATP carrier. Nature. 7766, 515–520.

    Article  Google Scholar 

  13. Samartsev V.N., Semenova A.A., Dubinin M.V. 2020. A comparative study of the action of protonophore uncouplers and decoupling agents as inducers of free respiration in mitochondria in states 3 and 4: Theoretical and experimental approaches. Cell Biochem. Biophys. 78, 203–216.

    Article  CAS  Google Scholar 

  14. Semenova A.A., Samartsev V.N., Dubinin M.V. 2021. The stimulation of succinate-fueled respiration of rat liver mitochondria in state 4 by α,ω-hexadecanedioic acid without induction of proton conductivity of the inner membrane. Intrinsic uncoupling of the bc 1 complex. Biochimie. 181, 215–225.

    Article  CAS  Google Scholar 

  15. Samartsev V.N., Paydyganov A.P., Polishchuk L.S., Zeldi I.P. 2004. Study on fatty acid uncoupling action in liver mitochondria by different pH of incubation medium. Biol. membrany (Rus.). 21, 39–45.

  16. Wanders R.J., Komen J., Kemp S. 2011. Fatty acid omega-oxidation as a rescue pathway for fatty acid oxidation disorders in humans. FEBS J. 278, 182–194.

    Article  CAS  Google Scholar 

  17. Longo N., Frigeni M., Pasquali M. 2016. Carnitine transport and fatty acid oxidation. Biochim. Biophys. Acta. 1863, 2422–2435.

    Article  CAS  Google Scholar 

  18. Ribel-Madsen A., Ribel-Madsen R., Brøns C., Newgard C.B., Vaag A.A., Hellgren L.I. 2016. Plasma acylcarnitine profiling indicates increased fatty acid oxidation relative to tricarboxylic acid cycle capacity in young, healthy low birth weight men. Physiol. Rep. 4, e12977.

    Article  Google Scholar 

  19. Hardwick J.P. 2008. Cytochrome P450 omega hydroxylase (CYP4) function in fatty acid metabolism and metabolic diseases. Biochem. Pharmacol. 75, 2263–2275.

    Article  CAS  Google Scholar 

  20. Tserng K.Y., Jin S.J. 1991. Metabolic conversion of dicarboxylic acids to succinate in rat liver homogenates. A stable isotope tracer study. J. Biol. Chem. 266 (5), 2924–2929.

    Article  CAS  Google Scholar 

  21. Westin M.A., Hunt M.C., Alexson S.E. 2005. The identification of a succinyl-CoA thioesterase suggests a novel pathway for succinate production in peroxisomes. J. Biol. Chem. 280 (46), 38125–38132.

    Article  CAS  Google Scholar 

  22. Jezek P., Modriansky M., Garlid K.D. 1997. Inactive fatty acids are unable to flip-flop across the lipid bilayer. FEBS Lett. 408, 161–165.

    Article  CAS  Google Scholar 

  23. Ko Y.H., Delannoy M., Hulliben J., Chiu W., Pedersen P.L. 2003. Mitochondrial ATP synthasome. Cristae-enriched membranes and a multiwell detergent screening assay yield dispersed single complexes containing the ATP and carriers for Pi and ADP/ATP. J. Biol. Chem. 278, 12305–12309.

    Article  CAS  Google Scholar 

  24. Beutner G., Alanzalon R.E., Porter G.A. 2017. Cyclophilin D regulates the dynamic assembly of mitochondrial ATP synthase into synthasomes. Sci. Rep. 7, 14488.

    Article  Google Scholar 

  25. Zachova M., Kramer R., Jezek P. 2000. Interaction of mitochondrial phosphate carrier with fatty acids and hydrophobic phosphate analogs. Int. J. Biochem. Cell Biol. 32, 499–508.

    Article  Google Scholar 

  26. Engstová H., Zácková M., Růzicka M., Meinhardt A., Hanus J., Krämer R., Jezek P. 2001. Natural and azido fatty acids inhibit phosphate transport and activate fatty acid anion uniport mediated by the mitochondrial phosphate carrier. J. Biol. Chem. 276 (7), 4683–4691.

    Article  Google Scholar 

  27. Samartsev V.N., Kozhina O.V., Marchik E.I., Shamagulova L.V. 2011. Involvement of phosphate carrier as a part of complex with ADP/ATP and aspartate/glutamate antiporters in palmitic acid-induced uncoupling in liver mitochondria. Biol. membrany (Rus.). 28 (3), 206–214.

  28. Dubinin M.V., Samartsev V.N., Stepanova A.E., Khoroshavina E.I., Penkov N.V., Yashin V.A., Starinets V.S., Mikheeva I.B., Gudkov S.V., Belosludtsev K.N. 2018. Membranotropic effects of ω-hydroxypalmitic acid and Ca2+ on rat liver mitochondria and lecithin liposomes. Aggregation and membrane permeabilization. J. Bioenerg. Biomembr. 50 (5), 391–401.

    Article  CAS  Google Scholar 

  29. Popova L.B., Nosikova E.S., Kotova E.A., Tarasova E.O., Nazarov P.A., Khailova L.S., Balezina O.P., Antonenko Y.N. 2018. Protonophoric action of triclosan causes calcium efflux from mitochondria, plasma membrane depolarization and bursts of miniature end-plate potentials. Biochim. Biophys. Acta Biomembranes. 1860 (5), 1000–1007.

  30. Ligeti E., Brandolin G., Dupont Y., Vignais P.V. 1985. Kinetic of Pi–Pi exchange in rat liver mitochondria. Rapid filtration experiments in the millisecond time range. Biochemistry. 24, 4423–4428.

    Article  CAS  Google Scholar 

  31. Ferreira G.C., Pedersen P.L. 1993. Phosphate transport in mitochondria: past accomplishments, present problems, and future challenges. J. Bioenerg. Biomembr. 25, 483–492.

    Article  CAS  Google Scholar 

  32. Fiermonte G., Dolce V., Palmieri F. 1998. Expression in Escherichia coli, functional characterization, and tissue distribution of isoforms A and B of the phosphate carrier from bovine mitochondria. J. Biol. Chem. 273, 22782–22787.

    Article  CAS  Google Scholar 

  33. Bernardi P. 1999. Mitochondrial transport of cations: Channels, exchengers, and permeability transition. Physiol. Rev. 79, 1127–1155.

    Article  CAS  Google Scholar 

  34. Mironova G.D., Kachaeva E.V., Kopylov A.T. 2007. Mitochondrial ATP-dependent potassium channel. 1. The structure of the channel, the mechanisms of its functioning and regulation. Vestn. Ross. Akad. Med. Nauk (Rus.). 2, 34–43.

    Google Scholar 

  35. Szabo I., Zoratti M. 2014. Mitochondrial channels: Ion fluxes and more. Physiol. Rev. 94, 519–608.

    Article  CAS  Google Scholar 

  36. Belosludtsev K.N., Belosludtseva N.V., Dubinin M.V. 2020. Diabetes mellitus, mitochondrial dysfunction and Ca2+-dependent permeability transition pore. Int. J. Mol. Sci. 21 (18), 6559.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was supported by the Russian Foundation for Basic Research (project no. 20-015-00124).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Dubinin.

Ethics declarations

The authors declare that they have no conflict of interest.

All procedures were performed in accordance with the European Communities Council Directive (November 24, 1986; 86/609/EEC) and the Declaration on humane treatment of animals. The Protocol of experiments was approved by the Commission on Bioethics of the Mari State University.

Additional information

Translated by M. Dubinin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubinin, M.V., Semenova, A.A., Krasnoshchekova, O.E. et al. The Role of the Phosphate Carrier in the Ionophore Uncoupling Action of ω-Hydroxypalmitic Acid in Liver Mitochondria. Biochem. Moscow Suppl. Ser. A 15, 348–355 (2021). https://doi.org/10.1134/S1990747821060039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747821060039

Keywords

Navigation