Skip to main content
Log in

Structural Characteristic of Nucleolus and Heterochromatin Aggregates of Rat Brain Tanycytes

  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract—

This work was aimed at studying the structural organization of nucleolus and constitutive heterochromatin in different types of tanycytes during postnatal development and aging of rats. The distribution of nucleolus argentophilic proteins (nucleolin and nucleophosmin) and heterochromatin aggregates in tanycytes at various stages of postnatal development have been described for the first time using immunohistochemical methods and confocal laser microscopy. The heterogeneity of the size and number of nucleoli was demonstrated both in different tanycytes subpopulations and at different ages of an animal. This may indicate different levels of the tanycyte synthetic activity and the ability to proliferate during early postnatal development and aging. During aging, the distribution of heterochromatin aggregates varies among tanycyte subpopulations: α-tanycytes undergo intense heterochromatization, while β-tanycytes are characterized by a stable organization of the studied compartments of the cell nucleus. The data obtained significantly supplement the modern understanding of organization of the structure of the cell nucleus of tanycytes during normal development and aging. This can subsequently serve as a basis for establishing the role of these subnuclear structures in pathological processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Prevot V., Dehouck B., Sharif A., Ciofi P., Giacobini P., Clasadonte J. 2018. The versatile tanycyte: A hypothalamic integrator of reproduction and energy metabolism. Endocr. Rev. 39 (3), 333–368.

    Article  Google Scholar 

  2. Rodríguez E., Guerra M., Peruzzo B., Blázquez J.L. 2019. Tanycytes: A rich morphological history to underpin future molecular and physiological investigations. J. Neuroendocrinol. 31 (3), e12690.

    Article  Google Scholar 

  3. Parlato R., Kreiner G. 2013. Nucleolar activity in neurodegenerative diseases: A missing piece of the puzzle? J. Mol. Med (Berl.). 91 (5), 541–547.

    Article  CAS  Google Scholar 

  4. Parlato R., Bierhoff H. 2015. Role of nucleolar dysfunction in neurodegenerative disorders: A game of genes? AIMS Mol. Sci. 2 (3), 211–224.

    Article  CAS  Google Scholar 

  5. Yang K., Yang J., Yi J. 2018. Nucleolar stress: Hallmarks, sensing mechanism and diseases. Cell Stress. 2 (6), 125–140.

    Article  Google Scholar 

  6. Kourmouli N., Jeppesen P., Mahadevhaiah S., Burgoyne P., Wu R., Gilbert D.M., Bongiorni S., Prantera G., Fanti L., Pimpinelli S., Shi W, Fundele R., Singh P.B. 2004. Heterochromatin and tri-methylated lysine 20 of histone H4 in animals. J. Cell. Sci. 117 (Pt 12), 2491–501.

    Article  CAS  Google Scholar 

  7. Wang Z., Zang C., Rosenfeld J.A., Schones D.E., Barski A., Cuddapah S., Cui K., Roh T.Y., Peng W., Zhang M.Q., Zhao K. 2008. Combinatorial patterns of histone acetylations and methylations in the human genome. Nat. Genet. 40 (7), 897–903.

    Article  CAS  Google Scholar 

  8. Schotta G., Lachner M., Sarma K., Ebert A., Sengupta R., Reuter G., Reinberg D., Jenuwein T. 2004. A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin. Genes Dev. 18 (11), 1251–1262.

    Article  CAS  Google Scholar 

  9. Fraga M.F., Ballestar E., Villar-Garea A., Boix-Chornet M., Espada J., Schotta G., Bonaldi T., Haydon C., Ropero S., Petrie K., Iyer N.G., Pérez-Rosado A., Calvo E., Lopez J.A., Cano A., Calasanz M.J., Colomer D., Piris M.A., Ahn N., Imhof A., Caldas C., Jenuwein T., Esteller M.2005. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat. Genet. 37, 391–400.

    Article  CAS  Google Scholar 

  10. Korzhevskii D.E., Sukhorukova E.G., Kirik O.V., Grigorev I.P. 2015. Immunohistochemical demonstration of specific antigens in the human brain fixed in zinc-ethanol-formaldehyde. Eur. J. Histochem. 59 (3), 2530.

    Article  CAS  Google Scholar 

  11. Paxinos G., Watson C. 2007. The rat brain in stereotaxic coordinates. 6th edition. New York: Elsevier/Academic Press.

    Google Scholar 

  12. Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., Tinevez J.Y., White D.J., Hartenstein V., Eliceiri K., Tomancak P., Cardona A. 2012. Fiji: An open-source platform for biological-image analysis. Nat. Meth. 9 (7), 676–682.

    Article  CAS  Google Scholar 

  13. Berciano M.T., Villagrá N.T., Pena E., Navascués J., Casafont I., Lafarga M. 2002. Structural and functional compartmentalization of the cell nucleus in supraoptic neurons. Microsc. Res. Tech. 56 (2), 132–142.

    Article  CAS  Google Scholar 

  14. Pleshakova I., Gusel’nikova V., Sufieva D., Korzhevskii D. 2018. The distribution of the nucleophosmin (B23) and histone H4K20me3 in the granule cells of the rat cerebellar cortex. Tsitologiya (Rus.). 60, 632–638.

    Article  Google Scholar 

  15. Cohen S., Greenberg M.E. 2008. Communication between the synapse and the nucleus in neuronal development, plasticity, and disease. Annu. Rev. Cell Dev. Biol. 24, 183–209.

    Article  CAS  Google Scholar 

  16. Sufieva D.A., Kirik O.V., Korzhevskii D.E. 2018. Nucleolin and nucleoli in ependymocytes and tanycytes of the third ventricle of the rat brain. Cell Tiss. Biol. 12, 167–173.

    Article  Google Scholar 

  17. Pena E., Berciano M.T., Fernandez R., Ojeda J.L., Lafarga M. 2001. Neuronal body size correlates with the number of nucleoli and Cajal bodies, and with the organization of the splicing machinery in rat trigeminal ganglion neurons. J. Comp. Neurol. 430 (2), 250–263.

    Article  CAS  Google Scholar 

  18. Zharskaya O.O., Zatsepina O.V. 2007. Dynamics and mechanisms of reorganization of the nucleolus in mitosis. Tsitologiya (Rus.). 49 (5), 355–369.

    Google Scholar 

  19. Watanabe-Susaki K., Takada H., Enomoto K., Miwata K., Ishimine H., Intoh A., Ohtaka M., Nakanishi M., Sugino H., Asashima M., Kurisaki A. 2014. Biosynthesis of ribosomal RNA in nucleoli regulates pluripotency and differentiation ability of pluripotent stem cells. Stem Cells. 32 (12), 3099–3111.

    Article  CAS  Google Scholar 

  20. Tajrishi M.M., Tuteja R., Tuteja N. 2011. Nucleolin: The most abundant multifunctional phosphoprotein of nucleolus. Commun. Integr. Biol. 4 (3), 267–275.

    Article  CAS  Google Scholar 

  21. Feric M., Vaidya N., Harmon T.S., Mitrea D.M., Zhu L., Richardson T.M., Kriwacki R.W., Pappu R.V., Brangwynne C.P. 2016. Coexisting liquid phases underlie nucleolar subcompartments. Cell. 165 (7), 1686–1697.

    Article  CAS  Google Scholar 

  22. Ginisty H., Sicard H., Roger B., Bouvet P. 1999. Structure and functions of nucleolin. J. Cell. Sci. 112 (Pt. 6), 761–772.

    Article  CAS  Google Scholar 

  23. Lindström M.S. 2011. NPM1/B23: A multifunctional chaperone in ribosome biogenesis and chromatin remodeling. Biochem. Res. Int. 2011, 195209.

    Article  Google Scholar 

  24. Colombo E., Alcalay M., Pelicci P. 2011. Nucleophosmin and its complex network: A possible therapeutic target in hematological diseases. Oncogene. 30, 2595–2609.

    Article  CAS  Google Scholar 

  25. Guselnikova V.V., Sufieva D.A., Korzhevsky D.E. 2020. Nucleophosmin, coilin, and argentophilic (AgNOR) proteins in the neurons of human substantia nigra. Cell Tiss. Biol. 14, 380–387.

    Article  Google Scholar 

  26. Jia W., Yao Z., Zhao J., Guan Q., Gao L. 2017. New perspectives of physiological and pathological functions of nucleolin (NCL). Life Sci. 186, 1–10.

    Article  CAS  Google Scholar 

  27. Ugrinova I., Petrova M., Chalabi-Dchar M., Bouvet P. 2018. Multifaceted nucleolin protein and its molecular partners in oncogenesis. Adv. Protein Chem. Struct. Biol. 111, 133–164.

    Article  CAS  Google Scholar 

  28. Vladimirova N.M., Potapenko N.A., Surina E.A., Volpina O.M. 2014. Peculiarities of structural status of protein B23/nucleophosmin in brain cells. Biol. membrany (Rus.). 31 (1), 57–67.

  29. Wang J., Jia S.T., Jia S. 2016. New insights into the regulation of heterochromatin. Trends Genet. 32 (5), 284–294.

    Article  Google Scholar 

  30. Lee J.H., Kim E.W., Croteau D.L., Bohr V.A. 2020. Heterochromatin: An epigenetic point of view in aging. Exp. Mol. Med. 52, 1466–1474.

    Article  CAS  Google Scholar 

  31. Lezhava T. 2001. Chromosome and aging: Genetic conception of aging. Biogerontology. 2 (4), 253–260.

    Article  CAS  Google Scholar 

  32. Frehlick L.J., Eirín-López J.M., Ausió J. 2007. New insights into the nucleophosmin/nucleoplasmin family of nuclear chaperones. Bioessays. 29 (1), 49–59.

    Article  CAS  Google Scholar 

  33. Lafarga M., Berciano M.T., Hervas J.P., Villegas J. 1989. Nucleolar organization in granule cell neurons of the rat cerebellum. J. Neurocytol. 18 (1), 19–26.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was supported by the State Assignment for the Institute of Experimental Medicine. The images were obtained at the Human Microbiome Center for Collective Use of Scientific Equipment of the Institute of Experimental Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Sufieva.

Ethics declarations

The authors declare that they have no conflict of interest.

All procedures were performed in accordance with the European Communities Council Directive (November 24, 1986; 86/609/EEC) and the Declaration on humane treatment of animals. The protocol of experiments was approved by the Commission on Bioethics of the Institute of Experimental Medicine.

Additional information

Translated by E. Makeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sufieva, D.A., Pleshakova, I.M. & Korzhevskii, D.E. Structural Characteristic of Nucleolus and Heterochromatin Aggregates of Rat Brain Tanycytes. Biochem. Moscow Suppl. Ser. A 15, 319–328 (2021). https://doi.org/10.1134/S199074782105007X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199074782105007X

Keywords:

Navigation