Skip to main content
Log in

Intermediate filament proteins in tanycytes of the third cerebral ventricle in rats during postnatal ontogenesis

  • Morphological Basics for Evolution of Functions
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Cytoskeletal intermediate filaments (IF) are composed of proteins able to form homo- and heterodimers, while their repertoire can change during cell differentiation. Data on the IF protein composition in tanycytes lining the mammalian third cerebral ventricle are still discrepant. The aim of this study was to investigate age-related changes in the IF protein composition in tanycytes of the third cerebral ventricle in Wistar rats at different ages (7-, 14-, and 30-day-old pups and 4–5-month-old adults; n = 26), using immunocytochemistry and confocal laser microscopy. In adult animals, tanycytes were shown to express IF proteins vimentin, GFAP, and nestin. In different types of tanycytes GFAP and nestin begin to be synthesized at different postnatal ages. For example, in α1 tanycytes GFAP is already present in 7-day-old animals, while in β1 tanycytes it appears only by day 30 of postnatal development. Meanwhile, vimentin is an essential IF component at all ages studied. A comparison of our data with the results obtained on other animal models suggests the existence of species-specific differences in the IF protein repertoire in tanycytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Polenov, A.L., Gipotalamicheskaya neirosekretsiya (Hypothalamic Neurosecretion), Leningrad, Nauka, 1968.

    Google Scholar 

  2. Polenov, A.L., Neiroendokrinologiya (Neuroendocrynology), SPb, Nauka, 1993.

    Google Scholar 

  3. Pearson, C.A. and Placzek, M., Development of the medial hypothalamus: forming a functional hypothalamic–neurohypophyseal interface, Curr. Top. Dev. Biol., 2013, vol. 106, pp. 49–88.

    Article  CAS  PubMed  Google Scholar 

  4. Grove, K.L., Grayson, B.E., Glavas, M.M., Xiao, X.Q., and Smith, M.S., Development of metabolic systems, Physiol. Behav., 2005, vol. 86, no. 5, pp. 646–660.

    Article  CAS  PubMed  Google Scholar 

  5. Baquero, A.F., Kirigiti, M.A., Baquero, K.C., Lee, S.J., Smith, M.S., and Grove, K.L., Developmental changes in synaptic distribution in arcuate nucleus neurons, J. Neurosci., 2015, vol. 35, no. 22, pp. 8558–8569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chernysheva, M.P., Romanova, I.V., and Mikhrina, A.L., Effect of retinol on interaction of the protein period1, oxytocin and GABA at the prenatal period of formation of the circadian clockmechanisms in rats, Zh. Evol. Biokhim. Fiziol., 2012, vol. 48, no. 5, pp. 481–486.

    CAS  PubMed  Google Scholar 

  7. Molodtsov, V.N., Senchenkov, E.V., and Bazhanova, E.D., Apoptosis and vasopressin, insulin and Bcl-2 expression in neurosecretory system of old mice, Zh. Evol. Biokhim. Fiziol., 2006, vol. 42, no. 3, pp. 283–288.

    CAS  PubMed  Google Scholar 

  8. Ugryumov, M.V., Mekhanizmy neirosekretornoi regulyatsii (Mechanisms of Neurosecretory Regulation), Moscow, 1999.

    Google Scholar 

  9. Ekimova, I.V. and Pastukhov, Yu.F., Participation of GABAergic mechanisms of hypothalamus ventrolateral preoptical area in regulation of sleep and wakefulness and temperature homeostasis in the pigeon Columba livia, Zh. Evol. Biokhim. Fiziol., 2005, vol. 41, no. 4, pp. 356–363.

    CAS  PubMed  Google Scholar 

  10. Chernigovskaya, E.V., Yamova, L.A., Atochin, D., Huang, P., and Glazova, M.V., Interaction of neuronal NOS and catecholamines in regulation of expression of proteins of apoptosis by vasopressinergic hypothalamic neurons, Zh. Evol. Biokhim. Fiziol., 2011, vol. 47, no. 3, pp. 232–238.

    Google Scholar 

  11. Akmaev, I.G., Endocrine system, Rukovodstvo po gistologii (Handbook of Histology), St. Petersburg, vol. II, pp. 429–542.

  12. Rodríguez, E.M., Blázquez, J.L., Pastor, F.E., Peláez, B., Peña, P., Peruzzo, B., and Amat, P., Hypothalamic tanycytes: a key component of brain–endocrine interaction, Int. Rev. Cytol., 2005, vol. 247, pp. 89–164.

    Article  PubMed  Google Scholar 

  13. Prevot, V., Bellefontaine, N., Baroncini, M., Sharif, A., Hanchate, N.K., Parkash, J., Campagne, C., and Seranno, S. de, Gonadotrophinreleasing hormone nerve terminals, tanycytes and neurohaemal junction remodelling in the adult median eminence: functional consequences for reproduction and dynamic role of vascular endothelial cells, J. Neuroendocrinol., 2010, vol. 22, pp. 639–649.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Korzhevskii, D.E., Sukhorukova, E.G., Kirik, O.V., Grigorev, I.P., et.al., Immunohistochemical demonstration of specific antigens in the human brain fixed in zinc-ethanol-formaldehyde, Eur. J. Histochem., 2015, vol. 59, no. 3, pp. 233–237.

  15. Korzhevskii, D.E., Kirik, O.V., Sukhorukova, E.G., Kolos, E.A., Karpenko, M.N., Sufieva, D.A., and Nazarenkova, A.V., Molekulyarnaya morfologiya. Metody fluorestsentnoi i konfokal’noi lazernoi mikroskopii (Molecular Morphology. Methods of Fluorescent and Confocal Laser Microscopy), Korzhevskii, D.E., Ed., St. Petersburg, 2014.

  16. Paxinos, G. and Watson, Ch., The Rat Brain in Stereotaxic Coordinates, Fourth Edition, San Diego, 1998.

    Google Scholar 

  17. Bruni, J.E., Ependymal development, proliferation, and functions: A Review, Micros. Res. Techniq., 1998, vol. 41, pp. 2–13.

    CAS  Google Scholar 

  18. Zoli, M., Ferraguti, F., Frasoldati, A., Biagini, G., and Agnati, L.F., Age-related alterations in tanycytes of the mediobasal hypothalamus of the male rat, Neurobiol. Aging, 1995, vol. 16, no. 1, pp. 77–83.

    Article  CAS  PubMed  Google Scholar 

  19. Chauvet, N., Prieto, M., and Alonso, G., Tanycytes present in the adult rat mediobasal hypothalamus support the regeneration of monoaminergic axons, Exp. Neurol., 1998, vol. 151, pp. 1–13.

    Article  CAS  PubMed  Google Scholar 

  20. Redecker, P., Postnatal development of glial fibrillary acidic protein (GFAP) immunoreactivity in pituicytes and tanycytes of the Mongolian gerbil (Meriones unguiculatus), Histochem., 1989, vol. 91, pp. 507–515.

    Article  CAS  Google Scholar 

  21. Ugryumov, M.V. and Chandrasekhar, K., An electron microscopical study of tanycyte differentiation in rats during the prenatal period, Ontogen., 1980, vol. 11, no. 4, pp. 351–358.

    Google Scholar 

  22. Monroe, B.G. and Paull, W.K., Ultrastructural changes in the hypothalamus during development and hypothalamic activity: the median eminence, Prog. Brain Res., 1974, vol. 41, pp. 185–208.

    Article  CAS  PubMed  Google Scholar 

  23. Minin, A.A. and Moldaver, M.V., Vimentin intermediate filaments and their role in intracellular distribution of organelles, Usp. Biol. Khim., 2008, vol. 48, pp. 221–252.

    Google Scholar 

  24. Korzhevskii, D.E., Kirik, O.V., Karpenko, M.N., Petrova, E.S., Grigoryev, I.P., Gilyarov, A.V., and Sukhorukova, E.G., Teoreticheskie osnovy i prakticheskoe primenenie metodov immunogistokhimii: rukovodstvo (Theoretical Foundations and Practical Application of Immunohistochemical Methods: A Manual), Korzhevskii, D.E., Ed., St. Petersburg, 2012, pp. 83–85.

    Google Scholar 

  25. Lowery, J., Kuczmarski, E.R., Herrmann, H., and Goldman, R.D., Intermediate filaments play a pivotal role in regulating cell architecture and function, J. Biol. Chem., 2015, vol. 290, no. 28, pp. 17145–17153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kirik, O.V. and Korzhevskii, D.E., Expression of neural stem cell marker nestin in the kidney of rats and humans, Bull. Exp. Biol. Med., 2009, vol. 147, no. 4, pp. 539–541.

    Article  CAS  PubMed  Google Scholar 

  27. Korzhevskii, D.E. and Kirik, O.V., Intermediate filament proteins nestin and vimentin in the rat kidney cells, Morfol., 2008, vol. 134, no. 6, pp. 50–54.

    CAS  Google Scholar 

  28. Levine, S., Saltzman, A., and Ginsberg, S.D., Mitotic figures in the median eminence of the hypothalamus, Neurochem. Res., 2010, vol. 35, pp. 1743–1746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wei, X.Y., Zhao, C.H., Liu, Y.Y., Wang, Y.Z., and Ju, G., Immuohistochemical markers for pituicyte, Neurosci. Lett., 2009, vol. 465, no. 1, pp. 27–30.

    Article  CAS  PubMed  Google Scholar 

  30. Wittkowski, W., Tanycytes and pituicytes: morphological and functional aspects of neuroglial interaction, Microsc. Res. Tech., 1998, vol. 41, no. 1, pp. 29–42.

    Article  CAS  PubMed  Google Scholar 

  31. Korzhevskii, D.E., Otellin, V.A., and Grigorev, I.P., Glial fibrillary acidic protein in astrocytes in the human neocortex, Neurosci. Behav. Physiol., 2005, vol. 35, no. 8, pp. 789–792.

    Article  CAS  PubMed  Google Scholar 

  32. Guselnikova, V.V. and Korzhevskiy, D.E., NeuN as a neuronal nuclear antigen and neuron differentiation marker, Acta Naturae, 2015, vol. 7, no. 2 (25), pp. 42–47.

    CAS  Google Scholar 

  33. Alekseeva, O.S., Guselnikova, V.V., Beznin, G.V., and Korzhevskii, D.E., Prospects for the application of NeuN protein as a marker of the functional state of nerve cells in vertebrates, J. Evol. Biochem. Physiol., 2015, vol. 51, no. 5, pp. 357–369.

    Article  CAS  Google Scholar 

  34. Grove, K.L. and Smith, M.S., Ontogeny of the hypothalamic neuropeptide Y system, Physiol. Behav., 2003, vol. 79, pp. 47–63.

    Article  CAS  PubMed  Google Scholar 

  35. Langlet, F., Tanycytes: a gateway to the metabolic hypothalamus, J. Neuroendocrinol., 2014, vol. 26, pp. 753–760.

    Article  CAS  PubMed  Google Scholar 

  36. Gao, Y., Tschöp, M.H., and Luquet, S., Hypothalamic tanycytes: gate keepers to metabolic control, Cell Metab., 2014, vol. 19, no. 2, pp. 173–175.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. S. Alekseeva.

Additional information

Original Russian Text © D.A. Sufieva, O.V. Kirik, O.S. Alekseeva, D.E. Korzhevskii, 2016, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2016, Vol. 52, No. 6, pp. 436—443.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sufieva, D.A., Kirik, O.V., Alekseeva, O.S. et al. Intermediate filament proteins in tanycytes of the third cerebral ventricle in rats during postnatal ontogenesis. J Evol Biochem Phys 52, 490–498 (2016). https://doi.org/10.1134/S1234567816060082

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1234567816060082

Key words

Navigation