Skip to main content
Log in

Role of Neurotransmitters and Neuropeptides in Breast Cancer Metastasis

  • REVIEWS
  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

Having various pathological and molecular subtypes with several causes, breast cancer is the most prevalent malignancy amongst women. Neurotransmitters and neuropeptides are triggers responsible for the growth of cancerous cells and metastasis through their specific receptors. These neurotransmitters and neuropeptides include catecholamines, γ-amino butyric acid, acetylcholine, serotonin, neuropeptide Y, neurotensin, substance P, and neurokinin A. Each of these substances raises the risk of breast cancer and metastases, which ultimately lead to the death of patients. The purpose of this review is to investigate the role of neurotransmitters and neuropeptides in breast cancer metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Benson J.R., Jatoi I. 2012. The global breast cancer burden. Future Oncol. 8 (6), 697–702.

    Article  CAS  PubMed  Google Scholar 

  2. Polyak K. 2007. Breast cancer: Origins and evolution. J. Clin. Invest. 117 (11), 3155– 3163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dupouy S., Viardot-Foucault V., Alifano M., Souazé F., Plu-Bureau G., Chaouat M., Lavaur A., Hugol D., Gespach C., Gompel A., Forgez P. 2009. The neurotensin receptor-1 pathway contributes to human ductal breast cancer progression. PLoS One. 4 (1), e4223.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Visvanathan K., Chlebowski R.T., Hurley P., Col N.F., Ropka M., Collyar D., Morrow M., Runowicz C., Pritchard K.I., Hagerty K., Arun B., Garber J., Vogel V.G., Wade J.L., Brown P., Cuzick J., Kramer B.S., Lippman S.M. 2009. American society of clinical oncology clinical practice guideline update on the use of pharmacologic interventions including tamoxifen, raloxifene, and aromatase inhibition for breast cancer risk reduction. J. Clin. Oncol.27 (19), 3235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ismail-Khan R., Bui M.M. 2010. A review of triple-negative breast cancer. Cancer Control. 17 (3), 173–176.

    Article  PubMed  Google Scholar 

  6. Antoni M.H., Lutgendorf S.K., Cole S.W., Dhabhar F.S., Sephton S.E., McDonald P.G., Stefanek M., Sood A.K. 2006. The influence of bio-behavioural factors on tumour biology: Pathways and mechanisms. Nat. Rev. Cancer. 6 (3), 240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Thaker P.H., Han L.Y., Kamat A.A., Arevalo J.M., Takahashi R., Lu C., Jennings N.B., Armaiz-Pena G., Bankson J.A., Ravoori M., Merritt W.M., Lin Y.G., Mangala L.S., Kim T.J., Coleman R.L., Landen C.N., Li Y., Felix E., Sanguino A.M., Newman R.A., Lloyd M., Gershenson D.M., Kundra V., Lopez-Berestein G., Lutgendorf S.K., Cole S.W., Sood A.K. 2006. Chronic stress promotes tumor growth and angiogenesis in a mouse model of ovarian carcinoma. Nat. Med. 12 (8), 939.

    Article  CAS  PubMed  Google Scholar 

  8. Moreno-Smith M., Lutgendorf S.K., Sood A.K. 2010. Impact of stress on cancer metastasis. Future Oncol. 6 (12), 1863–1881.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Li S., Sun Y., Gao D. 2013. Role of the nervous system in cancer metastasis. Oncol. Lett.5 (4), 1101–1111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ondicova K., Mravec B. 2010. Role of nervous system in cancer aetiopathogenesis. Lancet Oncol. 11 (6), 596–601.

    Article  PubMed  Google Scholar 

  11. Lu R., Fan C., Shangguan W., Liu Y., Shang Y., Yin D., Zhang S., Huang Q., Li X., Meng W., Xu H., Zhou Z., Hu J., Li W., Liu L., Mo X. 2017. Neurons generated from carcinoma stem cells support cancer progression. Signal Transduct. Target Ther.2, 16036.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Pundavela J., Roselli S., Faulkner S., Attia J., Scott R.J., Thorne R.F., Forbes J.F., Bradshaw R.A., Walker M.M., Jobling P., Hondermarck H. 2015. Nerve fibers infiltrate the tumor microenvironment and are associated with nerve growth factor production and lymph node invasion in breast cancer. Mol. Oncol. 9 (8), 1626–1635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Magnon C. 2015. Role of the autonomic nervous system in tumorigenesis and metastasis. Mol. Cell. Oncol. 2 (2), e975643.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Drell T, Joseph J, Lang K, Niggemann B., Zaenker K., Entschladen F. 2003. Effects of neurotransmitters on the chemokinesis and chemotaxis of MDA-MB-468 human breast carcinoma cells. Breast Cancer Res. Treat. 80 (1), 63–70.

    Article  CAS  PubMed  Google Scholar 

  15. Rodriguez P.L., Jiang S., Fu Y., Avraham S., Avraham H.K. 2014. The proinflammatory peptide substance P promotes blood–brain barrier breaching by breast cancer cells through changes in microvascular endothelial cell tight junctions. Int. J. Cancer. 134 (5), 1034–1044.

    Article  CAS  PubMed  Google Scholar 

  16. Luthy I.A., Bruzzone A., Piñero C.P., Castillo L.F., Chiesa, I.J., Vazquez S., Sarappa M.G. 2009. Adrenoceptors: Non conventional target for breast cancer? Curr. Med. Chem. 16 (15), 1850–1862.

    Article  CAS  PubMed  Google Scholar 

  17. Garcia-Recio S., Fuster G., Fernandez-Nogueira P., Pastor-Arroyo E.M., Park S.Y., Mayordomo C., Ametller E., Mancino M., Gonzalez-Farre X., Russnes H.G., Engel P., Costamagna D., Fernandez P.L., Gascón P., Almendro V. 2013. Substance P autocrine signaling contributes to persistent HER2 activation that drives malignant progression and drug resistance in breast cancer. Cancer Res. 73 (21), 6424–6434.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang D., Li X., Yao Z., Wei C., Ning N., Li J. 2014. GABAergic signaling facilitates breast cancer metastasis by promoting ERK1/2-dependent phosphorylation. Cancer Lett.348 (1–2), 100–108.

    Article  CAS  PubMed  Google Scholar 

  19. Gumireddy K., Li A., Kossenkov A.V., Sakurai M., Yan J., Li Y., Xu H., Wang J., Zhang P.J., Zhang L., Showe L.C., Nishikura K., Huang Q. 2016. The mRNA-edited form of GABRA3 suppresses GABRA3-mediated Akt activation and breast cancer metastasis. Nat. Commun. 7, 10715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Muñoz M., Coveñas R. 2013. Involvement of substance P and the NK-1 receptor in cancer progression. Peptides. 48, 1–9.

    Article  PubMed  CAS  Google Scholar 

  21. Yang T., He W., Cui F., Xia J., Zhou R., Wu Z., Zhao Y., Shi M. 2016. MACC1 mediates acetylcholine-induced invasion and migration by human gastric cancer cells. Oncotarget. 7 (14), 18085.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hanaki T., Horikoshi Y., Nakaso K., Nakasone M., Kitagawa Y., Amisaki M., Arai Y., Tokuyasu N., Sakamoto T., Honjo S., Saito H., Ikeguchi M., Yamashita K., Ohno S., Matsura T. 2016. Nicotine enhances the malignant potential of human pancreatic cancer cells via activation of atypical protein kinase C. BBA–Gen. Subjects. 1860 (11), 2404–2415.

  23. Xiang T., Fei R., Wang Z., Shen Z., Qian J., Chen W. 2016. Nicotine enhances invasion and metastasis of human colorectal cancer cells through the nicotinic acetylcholine receptor downstream p38 MAPK signaling pathway. Oncol. Rep. 35 (1), 205–210.

    Article  CAS  PubMed  Google Scholar 

  24. Sarkar C., Chakroborty D., Basu S. 2013. Neurotransmitters as regulators of tumor angiogenesis and immunity: The role of catecholamines. J. Neuroimmune Pharm. 8 (1), 7–14.

    Article  Google Scholar 

  25. Chakroborty D., Sarkar C., Basu B., Dasgupta P.S., Basu S. 2009 Catecholamines regulate tumor angiogenesis. Cancer Res. 69 (9), 3727–3730.

    Article  CAS  PubMed  Google Scholar 

  26. Ganong W. 2005. Synaptic and junctional transmission. Review of medical physiology. 22nd ed Boston: McGraw Hill. P. 85.

    Google Scholar 

  27. Liu J., Deng G.-H., Zhang J., Wang Y., Xia X.Y., Luo X.M., Deng Y.T., He S.S., Mao Y.Y., Peng X.C., Wei Y.Q., Jiang Y. 2015. The effect of chronic stress on anti-angiogenesis of sunitinib in colorectal cancer models. Psychoneuroendocrinology. 52, 130–142.

    Article  CAS  PubMed  Google Scholar 

  28. Xie H., Li C., He Y., Griffin R., Ye Q., Li, L. 2015. Chronic stress promotes oral cancer growth and angiogenesis with increased circulating catecholamine and glucocorticoid levels in a mouse model. Oral Oncol. 51 (11), 991–997.

    Article  CAS  PubMed  Google Scholar 

  29. Yu F.-X., Zhao B., Panupinthu N., Jewell J.L., Jewell J.L., Lian I., Wang L.H., Zhao J., Yuan H., Tumaneng K., Li H., Fu X.D., Mills G.B., Guan K.L. 2012. Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling. Cell. 150 (4), 780–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dethlefsen C., Hansen L.S., Lillelund C., Andersen C., Gehl J., Christensen J.F., Pedersen B.K., Hojman P. 2017. Exercise-induced catecholamines activate the hippo tumor suppressor pathway to reduce risks of breast cancer development. Cancer Res. 77 (18), 4894–4904.

    Article  CAS  PubMed  Google Scholar 

  31. Badouel C., McNeill H. 2011. SnapShot: The hippo signaling pathway. Cell. 145 (3), 484–484. e1. doi 10.https://doi.org/10.1016/j.cell.2011.04.009

  32. Kanai F., Marignani P.A., Sarbassova D., Yagi R., Hall R.A., Donowitz M., Hisaminato A., Fujiwara T., Ito Y., Cantley L.C., Yaffe M.B. 2000. TAZ: A novel transcriptional co-activator regulated by interactions with 14-3-3 and PDZ domain proteins. EMBO J.19 (24), 6778–6791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yu F.-X., Zhang Y., Park H.W., Jewell J.L., Chen Q., Deng Y., Pan D., Taylor S.S., Lai Z.C., Guan K.L. 2013. Protein kinase A activates the Hippo pathway to modulate cell proliferation and differentiation. Genes Dev. 27 (11), 1223–1232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kim M., Kim M., Lee S., Kuninaka S. Saya H., Lee H., Lee S., Lim D.S. 2013. cAMP/PKA signalling reinforces the LATS–YAP pathway to fully suppress YAP in response to actin cytoskeletal changes. EMBO J.32 (11), 1543–1555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zanconato F., Cordenonsi M., Piccolo S. 2016. YAP/TAZ at the roots of cancer. Cancer Cell. 29 (6), 783–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dethlefsen C., Hansen L.S., Lillelund C., Andersen C., Gehl J., Christensen J.F., Pedersen B.K., Hojman P. 2017. Exercise-induced catecholamines activate the hippo tumor suppressor pathway to reduce risks of breast cancer development. Cancer Res. 77 (18), 4894–4904.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang D., Yong Ma Q., Hu H.-T., Zhang M. 2010. β2-Adrenergic antagonists suppress pancreatic cancer cell invasion by inhibiting CREB, NF-κB and AP-1. Cancer Biol. Ther. 10 (1), 19–29.

    Article  CAS  PubMed  Google Scholar 

  38. Palm D., Lang K., Niggemann B., Drell T.L. 4th, Masur K., Zaenker K.S., Entschladen F. 2006. The norepinephrine-driven metastasis development of PC-3 human prostate cancer cells in BALB/c nude mice is inhibited by β-blockers. Int. J. Cancer. 118 (11), 2744–2749.

    Article  CAS  PubMed  Google Scholar 

  39. Montoya A., Varela-Ramirez A., Dickerson E., Pasquier E., Torabi A., Aguilera R., Nahleh Z., Bryan B. 2019. The beta adrenergic receptor antagonist propranolol alters mitogenic and apoptotic signaling in late stage breast cancer. Biomed. J.42 (3), 155–165.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lang K., Drell T.L. 4th, Lindecke A., Niggemann B., Kaltschmidt C., Zaenker K.S., Entschladen F. 2004. Induction of a metastatogenic tumor cell type by neurotransmitters and its pharmacological inhibition by established drugs. Int. J. Cancer. 112 (2), 231–238.

    Article  CAS  PubMed  Google Scholar 

  41. Montoya A., Amaya C.N., Belmont A., Diab N., Trevino R., Villanueva G., Rains S., Sanchez L.A., Badri N., Otoukesh S., Khammanivong A., Liss D., Baca S.T., Aguilera R.J., Dickerson E.B., Torabi A., Dwivedi A.K., Abbas A., Chambers K., Bryan B.A., Nahleh Z. 2017. Use of non-selective β-blockers is associated with decreased tumor proliferative indices in early stage breast cancer. Oncotarget. 8 (4), 6446.

    Article  PubMed  Google Scholar 

  42. Munabi N.C., England R.W., Edwards A.K., Kitajewski A.A., Tan Q.K., Weinstein A., Kung J.E., Wilcox M., Kitajewski J.K., Shawber C.J., Wu J.K. 2016. Propranolol targets hemangioma stem cells via cAMP and mitogen-activated protein kinase regulation. Stem Cells Transl. Med. 5 (1), 45–55.

    Article  CAS  PubMed  Google Scholar 

  43. Zhou C., Chen X., Zeng W., Peng C., Huang G., Li X., Ouyang Z., Luo Y., Xu X., Xu B., Wang W., He R., Zhang X., Zhang L., Liu J., Knepper T.C., He Y., McLeod H.L. 2016. Propranolol induced G0/G1/S phase arrest and apoptosis in melanoma cells via AKT/MAPK pathway. Oncotarget. 7 (42), 68314.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Stiles J.M., Amaya C., Rains S., Diaz D., Pham R., Battiste J., Modiano J.F., Kokta V., Boucheron L.E., Mitchell D.C., Bryan B.A. 2013. Targeting of beta adrenergic receptors results in therapeutic efficacy against models of hemangioendothelioma and angiosarcoma. PLoS One. 8 (3), e60021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chim H., Armijo B.S., Miller E., Gliniak C., Serret M.A., Gosain A.K. 2012. Propranolol induces regression of hemangioma cells through HIF-1α–mediated inhibition of VEGF-A. Ann. Surg. 256 (1), 146–156.

    Article  PubMed  Google Scholar 

  46. Zhang L., Mai H.-M., Zheng J., Zheng J.-W., Wang Y.-A., Qin Z.-P., Li K.-L. 2014. Propranolol inhibits angiogenesis via down-regulating the expression of vascular endothelial growth factor in hemangioma derived stem cell. Int. J. Clin. Exp. Pathol. 7 (1), 48.

    PubMed  Google Scholar 

  47. Sloan E.K., Priceman S.J., Cox B.F., Yu S., Pimentel M.A., Tangkanangnukul V., Arevalo J.M., Morizono K., Karanikolas B.D., Wu L., Sood A.K., Cole S.W. 2010. The sympathetic nervous system induces a metastatic switch in primary breast cancer. Cancer Res. 70 (18), 7042–7052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Charmandari E., Tsigos C., Chrousos G. 2005. Endocrinology of the stress response. Annu. Rev. Physiol. 67, 259–284.

    Article  CAS  PubMed  Google Scholar 

  49. Glaser R., Kiecolt-Glaser J.K. 2005. Stress-induced immune dysfunction: Implications for health. Nat. Rev. Immunol. 5 (3), 243.

    Article  CAS  PubMed  Google Scholar 

  50. Powe D.G., Entschladen F. 2011. Targeted therapies: Using β-blockers to inhibit breast cancer progression. Nat. Rev. Clin. Oncol. 8 (9), 511.

    Article  PubMed  Google Scholar 

  51. Slotkin T.A., Zhang J., Dancel R., Garcia S.J., Willis C., Seidler F.J. 2000. β-Adrenoceptor signaling and its control of cell replication in MDA-MB-231 human breast cancer cells. Breast Cancer Res. Treat. 60 (2), 153–166.

    Article  CAS  PubMed  Google Scholar 

  52. Sastry K.S., Karpova Y., Prokopovich S., Smith A.J., Essau B., Gersappe A., Carson J.P., Weber M.J., Register T.C., Chen Y.Q., Penn R.B., Kulik G. 2007 Epinephrine protects cancer cells from apoptosis via activation of PKA and BAD phosphorylation. J. Biol. Chem. 282 (19), 14094–14100.

    Article  CAS  PubMed  Google Scholar 

  53. Szpunar M.J., Burke K.A., Dawes R.P., Brown E.B., Madden K.S. 2013. The antidepressant desipramine and α2-adrenergic receptor activation promote breast tumor progression in association with altered collagen structure. Cancer Prev. Res. 6 (12), 1262–1272.

    Article  CAS  Google Scholar 

  54. Boonstra E., de Kleijn R., Colzato L.S., Alkemade A., Forstmann B.U., Nieuwenhuis S. 2015. Neurotransmitters as food supplements: The effects of GABA on brain and behavior. Front. Psychol. 6, 1520.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Matuszek M., Jesipowicz M., Kleinrok Z. 2001. GABA content and GAD activity in gastric cancer. Med. Sci. Monit. 7 (3), 377–381.

    CAS  PubMed  Google Scholar 

  56. Takehara A., Hosokawa M., Eguchi H., Ohigashi H., Ishikawa O., Nakamura Y., Nakagawa H. 2007. γ-Aminobutyric acid (GABA) stimulates pancreatic cancer growth through overexpressing GABAA receptor π subunit. Cancer Res. 67 (20), 9704–9712.

    Article  CAS  PubMed  Google Scholar 

  57. Sizemore G.M., Sizemore S.T., Seachrist D.D., Keri R.A. 2014. GABA (A) receptor pi (GABRP) stimulates basal-like breast cancer cell migration through activation of extracellular-regulated kinase 1/2 (ERK1/2). J. Biol. Chem. 289 (35), 24102–24113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Brzozowska A., Burdan F., Duma D., Solski J., Mazurkiewicz M. 2017. γ-Amino butyric acid (GABA) level as an overall survival risk factor in breast cancer. Ann. Agric. Environ. Med. 24 (3), 435–439.

    Article  CAS  PubMed  Google Scholar 

  59. Neman J., Termini J., Wilczynski S., Vaidehi N., Choy C., Kowolik C.M., Li H., Hambrecht A.C., Roberts E., Jandial R. 2014. Human breast cancer metastases to the brain display GABAergic properties in the neural niche. Proc. Natl. Acad. Sci. USA. 111 (3), 984–989.

    Article  CAS  PubMed  Google Scholar 

  60. Garib V., Niggemann B., Zänker K.S., Brandt L., Kubens B. 2002. Influence of non-volatile anesthetics on the migration behavior of the human breast cancer cell line MDA-MB-468. Acta Anaesthesiol. Scand. 46 (7), 836–844.

    Article  CAS  PubMed  Google Scholar 

  61. Garib V., Lang K., Niggemann B., Zänker K. 2005. Propofol-induced calcium signalling and actin reorganization within breast carcinoma cells. Eur. J. Anaesthesiol. 22 (8), 609–615.

    Article  CAS  PubMed  Google Scholar 

  62. Azuma H., Inamoto T., Sakamoto T., Kiyama S., Ubai T., Shinohara Y., Maemura K., Tsuji M., Segawa N., Masuda H., Takahara K., Katsuoka Y., Watanabe M. 2003. γ-Aminobutyric acid as a promoting factor of cancer metastasis induction of matrix metalloproteinase production is potentially its underlying mechanism. Cancer Res. 63 (23), 8090–8096.

    CAS  PubMed  Google Scholar 

  63. Abdul M., Mccray S.D., Hoosein N.M. 2008. Expression of gamma-aminobutyric acid receptor (subtype A) in prostate cancer. Acta Oncol. 47 (8), 1546–1550.

    Article  CAS  PubMed  Google Scholar 

  64. Zhou H., Huang S. 2011. Role of mTOR signaling in tumor cell motility, invasion and metastasis. Curr. Protein Pept. Sci. 12 (1), 30–42.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Martini M., De Santis M.C., Braccini L., Gulluni F., Hirsch E. 2014. PI3K/AKT signaling pathway and cancer: An updated review. Ann. Med. 46 (6), 372–383.

    Article  CAS  PubMed  Google Scholar 

  66. Nie H., Cao Q., Zhu L., Gong Y., Gu J., He Z. 2013. Acetylcholine acts on androgen receptor to promote the migration and invasion but inhibit the apoptosis of human hepatocarcinoma. PLoS One. 8 (4), e61678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Changeux J.-P., Kasai M., Lee C.-Y. 1970. Use of a snake venom toxin to characterize the cholinergic receptor protein. Proc. Natl. Acad. Sci. 67 (3), 1241–1247.

    Article  CAS  PubMed  Google Scholar 

  68. Clarke P., Schwartz R.D., Paul S.M., Pert C.B., Pert A. 1985. Nicotinic binding in rat brain: Autoradiographic comparison of [3H]-acetylcholine, [3H]-nicotine, and [125I]-alpha-bungarotoxin. J. Neurosci. 5 (5), 1307–1315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lloyd G.K., Williams M. 2000. Neuronal nicotinic acetylcholine receptors as novel drug targets. J. Pharmacol. Exp. Ther. 292 (2), 461–467.

    CAS  PubMed  Google Scholar 

  70. Romanelli M.N., Gratteri P., Guandalini L., Martini E., Bonaccini, C., Gualtieri F. 2007. Central nicotinic receptors: Structure, function, ligands, and therapeutic potential. ChemMedChem: Chemistry Enabling Drug Discovery. 2 (6), 746–767.

    Article  CAS  Google Scholar 

  71. Arneric S.P., Holladay M., Williams M. 2007. Neuronal nicotinic receptors: A perspective on two decades of drug discovery research. Biochem. Pharmacol. 74 (8), 1092–1101.

    Article  CAS  PubMed  Google Scholar 

  72. Hung C.-S., Peng Y.-J., Wei P.-L., Lee C.-H., Su H.Y., Ho Y.-S., Lin S.-Y., Wu C.-H., Chang Y.-J. 2011. The alpha9 nicotinic acetylcholine receptor is the key mediator in nicotine-enhanced cancer metastasis in breast cancer cells. J. Exp. Clin. Medicine. 3 (6), 283–292.

    Article  CAS  Google Scholar 

  73. Lee C.-H., Chang Y.-C., Chen C.-S., Tu S.-H., et al. 2011. Crosstalk between nicotine and estrogen-induced estrogen receptor activation induces α9-nicotinic acetylcholine receptor expression in human breast cancer cells. Breast Cancer Res. Treat. 129 (2), 331–345.

    Article  CAS  PubMed  Google Scholar 

  74. Huang L.-C., Lin C.-L., Qiu J.-Z., Lin C.-Y., et al. 2017. Nicotinic acetylcholine receptor subtype alpha-9 mediates triple-negative breast cancers based on a spontaneous pulmonary metastasis mouse model. Front. Cell Neurosci. 11, 336.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. West K.A., Brognard J., Clark A.S., Linnoila I.R., Yang X., Swain S.M., Harris C., Belinsky S., Dennis P.A. 2003. Rapid Akt activation by nicotine and a tobacco carcinogen modulates the phenotype of normal human airway epithelial cells. J. Clin. Invest. 111 (1), 81–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Gutkind J.S., Novotny E.A., Brann M.R., Robbins K.C. 1991. Muscarinic acetylcholine receptor subtypes as agonist-dependent oncogenes. Proc. Natl. Acad. Sci. USA. 88 (11), 4703–4707.

    Article  CAS  PubMed  Google Scholar 

  77. Jiménez E., Montiel M. 2005. Activation of MAP kinase by muscarinic cholinergic receptors induces cell proliferation and protein synthesis in human breast cancer cells. J. Cell. Physiol. 204 (2), 678–686.

    Article  PubMed  CAS  Google Scholar 

  78. Fromm C., Coso O.A., Montaner S., Xu N., Gutkind J.S. 1997. The small GTP-binding protein Rho links G protein-coupled receptors and Gα12 to the serum response element and to cellular transformation. Proc. Natl. Acad. Sci. USA. 94 (19), 10098–10103.

    Article  CAS  PubMed  Google Scholar 

  79. Hoyer D., Clarke D.E., Fozard J.R., Hartig P.R., Martin G.R., Mylecharane E.J., Saxena P.R., Humphrey P.P. 1994. International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (Serotonin). Pharmacol. Rev. 46 (2), 157–203.

    CAS  PubMed  Google Scholar 

  80. Sarrouilhe D., Mesnil M. 2019. Serotonin and human cancer: A critical view. Biochimie. 161, 46–50.

    Article  CAS  PubMed  Google Scholar 

  81. Sarrouilhe D., Clarhaut J., Defamie N., Mesnil M. 2015. Serotonin and cancer: What is the link? Curr. Mol. Med. 15 (1), 62–77.

    Article  CAS  PubMed  Google Scholar 

  82. Berger M., Gray J.A., Roth B.L. 2009. The expanded biology of serotonin. Annu. Rev. Med. 60, 355–366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Fröbe A., Čičin-Šain L., Jones G., Soldić Ž., Lukač J.; Bolanča A.; Kusić Z. 2014. Plasma free serotonin as a marker for early detection of breast cancer recurrence. Anticancer Res. 34 (3), 1167–1169.

    PubMed  Google Scholar 

  84. Iwabayashi M., Taniyama Y., Sanada F., Azuma J., Iekushi K., Okayama K., Chatterjee A., Rakugi H., Morishita R. 2012. Role of serotonin in angiogenesis: Induction of angiogenesis by sarpogrelate via endothelial 5-HT1B/Akt/eNOS pathway in diabetic mice. Atherosclerosis. 220 (2), 337–342.

    Article  CAS  PubMed  Google Scholar 

  85. Sonier B., Arseneault M., Lavigne C., Ouellette R.J., Vaillancourt C. 2006. The 5-HT2A serotoninergic receptor is expressed in the MCF-7 human breast cancer cell line and reveals a mitogenic effect of serotonin. Biochem. Biophys. Res. Commun. 343 (4), 1053–1059.

    Article  CAS  PubMed  Google Scholar 

  86. Raymond J.R., Mukhin Y.V., Gelasco A., Turner J., Collinsworth G., Gettys T.W., Grewal J.S., Garnovskaya M.N. 2001. Multiplicity of mechanisms of serotonin receptor signal transduction. Pharmacol. Therapeut. 92 (2–3), 179–212.

    Article  CAS  Google Scholar 

  87. Nebigil C.G., Garnovskaya M.N., Spurney R.F., Raymond J.R. 1995. Identification of a rat glomerular mesangial cell mitogenic 5-HT2A receptor. Am. J. Physiol. Renal Physiol. 268 (1), F122–F127.

    Article  CAS  Google Scholar 

  88. Guillet-Deniau I., Burnol A.-F., Girard J. 1997. Identification and localization of a skeletal muscle secrotonin 5-HT2A receptor coupled to the Jak/STAT pathway. J. Biol. Chem. 272 (23), 14825–14829.

    Article  CAS  PubMed  Google Scholar 

  89. Banes A.K., Shaw S.M., Tawfik A., Patel B.P., Ogbi S., Fulton D., Marrero M.B. 2005. Activation of the JAK/STAT pathway in vascular smooth muscle by serotonin. Am. J. Physiol., Cell Physiol. 288 (4), C805–C812.

    Article  CAS  PubMed  Google Scholar 

  90. Grewal J.S., Mukhin Y.V., Garnovskaya M.N., Raymond J.R., Greene E.L. 1999. Serotonin 5-HT2A receptor induces TGF-β1 expression in mesangial cells via ERK: Proliferative and fibrotic signals. Am. J. Physiol. Renal Physiol. 276 (6), F922–F930.

    Article  CAS  Google Scholar 

  91. Watts S.W., Yang P., Banes A.K., Baez M. 2001. Activation of Erk mitogen-activated protein kinase proteins by vascular serotonin receptors. J. Cardiovasc. Pharmacol. 38 (4), 539–551.

    Article  CAS  PubMed  Google Scholar 

  92. Gautam J., Banskota S., Regmi S.C., Ahn S., Jeon Y.H., Jeong H., Kim S.J., Nam T.G., Jeong B.S., Kim J.A. 2016. Tryptophan hydroxylase 1 and 5-HT 7 receptor preferentially expressed in triple-negative breast cancer promote cancer progression through autocrine serotonin signaling. Mol. Cancer. 15 (1), 75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Medeiros P.J., Jackson D.N. 2013. Neuropeptide Y Y5-receptor activation on breast cancer cells acts as a paracrine system that stimulates VEGF expression and secretion to promote angiogenesis. Peptides. 48, 106–113.

    Article  CAS  PubMed  Google Scholar 

  94. Movafagh S., Hobson J.P., Spiegel S., Kleinman H.K., Zukowska Z. 2006. Neuropeptide Y induces migration, proliferation, and tube formation of endothelial cells bimodally via Y1, Y2, and Y5 receptors. FASEB J.20 (11), 1924–1926.

    Article  CAS  PubMed  Google Scholar 

  95. Ewald D.A., Sternweis P.C., Miller R.J. 1988. Guanine nucleotide-binding protein Go-induced coupling of neuropeptide Y receptors to Ca2+ channels in sensory neurons. Proc. Natl. Acad. Sci. USA. 85 (10), 3633–3637.

    Article  CAS  PubMed  Google Scholar 

  96. Cabrele C., Beck-Sickinger A.G. 2000. Molecular characterization of the ligand–receptor interaction of the neuropeptide Y family. J. Pept. Sci. 6 (3), 97–122.

    Article  CAS  PubMed  Google Scholar 

  97. Reubi J.C., Gugger M., Waser B., Schaer J.-C. 2001. Y1-mediated effect of neuropeptide Y in cancer: Breast carcinomas as targets. Cancer Res. 61 (11), 4636–4641.

    CAS  PubMed  Google Scholar 

  98. Medeiros P.J., Al-Khazraji B.K., Novielli N.M., Postovit L.M., Chambers A.F., Jackson D.N. 2012. Neuropeptide Y stimulates proliferation and migration in the 4T1 breast cancer cell line. Int. J. Cancer. 131 (2), 276–286.

    Article  CAS  PubMed  Google Scholar 

  99. Sheriff S., Ali M., Yahya A., Haider K.H., Balasubramaniam A., Amlal H. 2010. Neuropeptide Y Y5 receptor promotes cell growth through extracellular signal-regulated kinase signaling and cyclic AMP inhibition in a human breast cancer cell line. ‎Mol. Cancer Res. 8 (4), 604–614.

    Article  CAS  PubMed  Google Scholar 

  100. Tilan J., Kitlinska J. 2010. Sympathetic neurotransmitters and tumor angiogenesis—link between stress and cancer progression. J. Oncol. 2010, 539706.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Zukowska-Grojec Z., Karwatowska-Prokopczuk E., Rose W., Rone J., Movafagh S, Ji H, Yeh Y, Chen WT, Kleinman HK, Grouzmann E, Grant DS. 1998. Neuropeptide Y: A novel angiogenic factor from the sympathetic nerves and endothelium. Circ. Res. 83 (2), 187–195.

    Article  CAS  PubMed  Google Scholar 

  102. Reinecke M. 1985. Neurotensin: Immunohistochemical localization in central and peripheral nervous system and in endocrine cells and its functional role as neurotransmitter and endocrine hormone. Prog. Histochem. Cytochem. 16 (1), 1–172.

    Article  CAS  PubMed  Google Scholar 

  103. Tyler-McMahon B.M., Boules M., Richelson E. 2000. Neurotensin: Peptide for the next millennium. Regul. Pept. 93 (1–3), 125–136.

    Article  CAS  PubMed  Google Scholar 

  104. Souazé F., Dupouy S., Viardot-Foucault V., Bruyneel E., Attoub S., Gespach C., Gompel A., Forgez P. 2006. Expression of neurotensin and NT1 receptor in human breast cancer: A potential role in tumor progression. Cancer Res. 66 (12), 6243–6249.

    Article  PubMed  Google Scholar 

  105. Callegari C.C., Cavalli I.J., Lima R.S., Jucoski T.S., Torresan C., Urban C.A., Kuroda F., Anselmi K.F., Cavalli L.R., Ribeiro E.M. 2016. Copy number and expression analysis of FOSL1, GSTP1, NTSR1, FADD and CCND1 genes in primary breast tumors with axillary lymph node metastasis. Cancer Genetics. 209 (7), 331–339.

    Article  CAS  PubMed  Google Scholar 

  106. Hassan S., Dobner P.R., Carraway R.E. 2004. Involvement of MAP-kinase, PI3-kinase and EGF-receptor in the stimulatory effect of Neurotensin on DNA synthesis in PC3 cells. Regul. Pept. 120 (1–3), 155–166.

    Article  CAS  PubMed  Google Scholar 

  107. Zhao D., Zhan Y., Koon H.W., Zeng H., Keates, S., Moyer M.P., Pothoulakis C. 2004. Metalloproteinase-dependent transforming growth factor-α release mediates neurotensin-stimulated MAP kinase activation in human colonic epithelial cells. J. Biol. Chem. 279 (42), 43547–43554.

    Article  CAS  PubMed  Google Scholar 

  108. Somaï S., Gompel A., Rostène W., Forgez P. 2002. Neurotensin counteracts apoptosis in breast cancer cells. Biochem. Biophys. Res. Commun. 295 (2), 482–488.

    Article  PubMed  CAS  Google Scholar 

  109. Nabeshima K., Inoue T., Shimao Y., Sameshima T. 2002. Matrix metalloproteinases in tumor invasion: Role for cell migration. Pathol. Int. 52 (4), 255–264.

    Article  CAS  PubMed  Google Scholar 

  110. Severini C., Improta G., Falconieri-Erspamer G., Salvadori S., Erspamer V. 2002. The tachykinin peptide family. Pharmacol. Rev. 54 (2), 285–322.

    Article  CAS  PubMed  Google Scholar 

  111. Palma C. Tachykinins and their receptors in human malignancies. 2006. Curr. Drug Targets.7 (8), 1043–1052.

    Article  CAS  PubMed  Google Scholar 

  112. Singh A.S., Caplan A., Corcoran K.E., Fernandez J.S., Preziosi M., Rameshwar P. 2006 Oncogenic and metastatic properties of preprotachykinin-I and neurokinin-1 genes. Vasc. Pharmacol. 45 (4), 235–242.

    Article  CAS  Google Scholar 

  113. Castro T.A., Cohen M.C., Rameshwar P. 2005. The expression of neurokinin-1 and preprotachykinin-1 in breast cancer cells depends on the relative degree of invasive and metastatic potential. Clin. Exp. Metastasis. 22 (8), 621–628.

    Article  CAS  PubMed  Google Scholar 

  114. Almendro V, Garcia-Recio S, Gascón P. Tyrosine kinase receptor transactivation associated to G protein-coupled receptors. Curr. Drug Targets. 2010 11 (9), 1169–80.

    Article  CAS  PubMed  Google Scholar 

  115. Koon H.-W., Zhao D., Na X., Moyer M.P., Pothoulakis C. 2004. Metalloproteinases and transforming growth factor-α mediate substance P-induced mitogen-activated protein kinase activation and proliferation in human colonocytes. J. Biol. Chem. 279 (44), 45519–45527.

    Article  CAS  PubMed  Google Scholar 

  116. Bigioni M., Benzo A., Irrissuto C., Maggi C.A., Goso C. 2005. Role of NK-1 and NK-2 tachykinin receptor antagonism on the growth of human breast carcinoma cell line MDA-MB-231. Anti-Ccancer Drug. 16 (10), 1083–1089.

    Article  CAS  Google Scholar 

  117. Li J., Zeng Q., Zhang Y., Li X., Hu H., Miao X., Yang W., Zhang W., Song X., Mou L., Wang R. 2016. Neurokinin-1 receptor mediated breast cancer cell migration by increased expression of MMP-2 and MMP-14. Eur. J. Cell Biol. 95 (10), 368–377.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Rasmi.

Ethics declarations

The authors declare that they have no conflict of interest.

This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pouya, F.D., Rasmi, Y. & Asl, E.R. Role of Neurotransmitters and Neuropeptides in Breast Cancer Metastasis. Biochem. Moscow Suppl. Ser. A 14, 107–116 (2020). https://doi.org/10.1134/S1990747820020142

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747820020142

Keywords:

Navigation