Skip to main content
Log in

The effect of dehydroepiandrosterone on inflammatory response of astroglial cells

  • Articles
  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

An increased interest in neuroinflammation is conditioned by its involvement in various pathological processes in the brain. Astrocytes play an important role in neuroinflammation, participating in its regulation, throwing out a large number of signaling molecules. Steroid compounds, actively produced by astrocytes, are of interest with regards to the regulation of inflammatory processes in the central nervous system. In the present work the effect of dehydroepiandrosterone (DHEA) on astroglial cells (cultured primary rat astrocytes) in a model of inflammation was studied. The inflammatory response was stimulated with lipopolysaccharide (LPS). Expression levels of pro-inflammatory factor TNFα, antinflammatory interleukin IL-10, and both pro- and antiinflammatory protein COX-2 were measured. The expression of IL-10, COX-2, and TNFα mRNA was determined by real-time PCR, COX-2 protein level by immunoblotting method, TNFα and IL-10 release by enzyme immunoassay. The effect of short-term (30 min) and long-term (24 h) exposure to DHEA was evaluated. It was shown that DHEA potentiates LPS-stimulated (1) increase in the IL-10 mRNA level; (2) IL-10 release; (3) does not affect TNFα level, and (4) exerts a weak pulsating bidirectional effect on COX-2. Using trilostane, an inhibitor of 3β-hydroxysteroid dehydrogenase, a key enzyme of DHEA metabolism, it was shown that DHEA metabolites make the main contribution to its effect. Thus, DHEA is of interest as a stimulant of anti-inflammatory processes in the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CNS:

central nervous system

COX-2:

cyclooxygenase 2

LPS:

lipopolysaccharide

TNFa:

tumor necrosis factor a

IL-10:

interleukin 10

DHEA:

dehydroepiandrosterone

References

  1. DiSabato D.J., Quan N., Godbout J.P. 2016. Neuroinflammation: The devil is in the details. J. Neurochem. 139, 136–153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Aleshin S., Strokin M., Sergeeva M., Reiser G. 2013. Peroxisome proliferator-activated receptor (PPAR)β/δ, a possible nexus of PPARα- and PPARγ-dependent molecular pathways in neurodegenerative diseases: Review and novel hypotheses. Neurochem. Int. 63, 322–330.

    Article  CAS  PubMed  Google Scholar 

  3. Lent R., Azevedo F.A.C., Andrade-Moraes C.H., Pinto A.V.O. 2012. How many neurons do you have? Some dogmas of quantitative neuroscience under revision. Eur. J. Neurosci. 35, 1–9.

    Article  PubMed  Google Scholar 

  4. Norden D.M., Fenn A.M., Dugan A., Godbout J.P. 2014. TGFβ produced by IL-10 redirected astrocytes attenuates microglial activation. Glia. 62, 881–895.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Choi Y.H., Park H.Y. 2012. Anti-inflammatory effects of spermidine in lipopolysaccharide-stimulated BV2 microglial cells. J. Biomed. Sci. 19, 31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Laube G., Veh R.W. 1997. Astrocytes, not neurons, show most prominent staining for spermidine/spermine-like immunoreactivity in adult rat brain. Glia. 19, 171–179.

    Article  CAS  PubMed  Google Scholar 

  7. Olsen M.L., Khakh B.S., Skatchkov S.N., Zhou M., Lee C.J., Rouach N. 2015. New insights on astrocyte ion channels: Critical for homeostasis and neuron–glia signaling. J. Neurosci. 35, 13827–13835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Skatchkov S.N., Woodbury-Fariña M.A., Eaton M. 2014. The role of glia in stress. Psychiatr. Clin. North Am. 37, 653–678.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Gresser O., Weber E., Hellwig A., Riese S., Régnier- Vigouroux A. 2001. Immunocompetent astrocytes and microglia display major differences in the processing of the invariant chain and in the expression of active cathepsin L and cathepsin S. Eur. J. Immunol. 31, 1813–1824.

    Article  CAS  PubMed  Google Scholar 

  10. Sofroniew M.V. 2015. Astrocyte barriers to neurotoxic inflammation. Nat. Rev. Neurosci. 16, 249–263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zwain I.H., Yen S.S. 1999. Dehydroepiandrosterone: Biosynthesis and metabolism in the brain. Endocrinology. 140, 880–887.

    Article  CAS  PubMed  Google Scholar 

  12. Arbo B.D., Bennetti F., Ribeiro M.F. 2016 Astrocytes as a target for neuroprotection: Modulation by progesterone and dehydroepiandrosterone. Prog. Neurobiol. 144, 27–47.

    Article  CAS  PubMed  Google Scholar 

  13. Goncharov N.P., Katsiya G.V., Nizhnik A.N. 2004. Formula zhizni. Degidroepiandrosteron: svoistva, metaboliizm, biologicheskoe znachenie (The formula of life. Dehydroepiandrosterone: Properties, metabolism, biological significance). M.: OOO Publishing Association Adamant.

    Google Scholar 

  14. Rutkowski K., Sowa P., Rutkowska-Talipska J., Kuryliszyn-Moskal A., Rutkowski R. 2014. Dehydroepiandrosterone (DHEA): Hypes and hopes. Drugs. 74, 1195–1207.

    Article  CAS  PubMed  Google Scholar 

  15. Chistyakov D.V., Aleshin S., Sergeeva M.G., Reiser G. 2014. Regulation of peroxisome proliferator-activated receptor β/δ expression and activity levels by toll-like receptor agonists and MAP kinase inhibitors in rat astrocytes. J. Neurochem. 130, 563–574.

    Article  CAS  PubMed  Google Scholar 

  16. Alexander C., Rietschel E.T. 2001. Bacterial lipopolysaccharides and innate immunity. J. Endotoxin Res. 7, 167–202.

    CAS  PubMed  Google Scholar 

  17. Powell J.M., Sonnenfeld G. 2006. The effects of dehydroepiandrosterone (DHEA) on in vitro spleen cell proliferation and cytokine production. J. Interf. Cytokine Res. 26, 34–39.

    Article  CAS  Google Scholar 

  18. Barkhausen T., Hildebrand F., Krettek C., van Griensven M. 2009. DHEA-dependent and organ-specific regulation of TNF-alpha mRNA expression in a murine polymicrobial sepsis and trauma model. Crit. Care. 13, R114.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wu Z., Li L., Zheng L.-T., Xu Z., Guo L., Zhen X. 2015. Allosteric modulation of sigma-1 receptors by SKF83959 inhibits microglia-mediated inflammation. J. Neurochem. 134, 904–914.

    Article  CAS  PubMed  Google Scholar 

  20. Barger S.W., Chavis J.A., Drew P.D. 2000. Dehydroepiandrosterone inhibits microglial nitric oxide production in a stimulus-specific manner. J. Neurosci. Res. 62, 503–509.

    Article  CAS  PubMed  Google Scholar 

  21. Kuehn C.C., Oliveira L.G.R., Santos C.D., Augusto M.B., Toldo M.P.A., Do Prado J.C. 2011. Prior and concomitant dehydroepiandrosterone treatment affects immunologic response of cultured macrophages infected with Trypanosoma cruzi in vitro? Vet. Parasitol. 177, 242–246.

    Article  CAS  PubMed  Google Scholar 

  22. García-Estrada J., Luquín S., Fernández A.M., Garcia-segura L.M. 1999. Dehydroepiandrosterone, pregnenolone and sexsteroids down-regulate reactive astroglia in the male ratbrain after a penetrating brain injury. Int. J. Dev. Neurosci. 17, 145–151.

    Article  PubMed  Google Scholar 

  23. Astakhova A.A., Chistyakov D.V., Pankevich E.V., Sergeeva M.G. 2015. Regulation of cyclooxygenase 2 expression by agonists of PPAR nuclear receptors in the model of endotoxin tolerance in astrocytes. Biochemistry (Moscow). 80, 1532–1541.

    Article  Google Scholar 

  24. Potts G.O., Creange J.E., Hardomg H.R., Schane H.P. 1978. Trilostane, an orally active inhibitor of steroid biosynthesis. Steroids. 32, 257–267.

    Article  CAS  PubMed  Google Scholar 

  25. Ledeboer A., Brevé J.J.P., Wierinckx A., van der Jagt S., Bristow A.F., Leysen J.E., Tilders F.J.H., Van Dam A.-M. 2002. Expression and regulation of interleukin-10 and interleukin-10 receptor in rat astroglial and microglial cells. Eur. J. Neurosci. 16, 1175–1185.

    Article  PubMed  Google Scholar 

  26. Mizuno T., Sawada M., Marunouchi T., Suzumura A. 1994. Production of interleukin-10 by mouse glial cells in culture. Biochem. Biophys. Res. Commun. 205, 1907–1915.

    Article  CAS  PubMed  Google Scholar 

  27. Rasley A., Tranguch S.L., Rati D.M., Marriott I. 2006. Murine glia express the immunosuppressive cytokine, interleukin-10, following exposure to Borrelia burgdorferi or Neisseria meningitidis. Glia. 53. 583–592.

    Article  PubMed  Google Scholar 

  28. Fouda A.Y., Kozak A., Alhusban A., Switzer J.A., Fagan S.C. 2013. Anti-inflammatory IL-10 is upregulated in both hemispheres after experimental ischemic stroke: Hypertension blunts the response. Exp. Transl. Stroke Med. 5, 12.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Font-Nieves M., Sans-Fons M.G., Gorina R., Bonfill-Teixidor E., Salas-Pérdomo A., Márquez-Kisinousky L., Santalucia T., Planas A.M. 2012. Induction of COX-2 enzyme and down-regulation of COX-1 expression by lipopolysaccharide (LPS) control prostaglandin E2 production in astrocytes. J. Biol. Chem. 287, 6454–6468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kipper-Galperin M., Galilly R., Danenberg H.D., Brenner T. 1999. Dehydroepiandrosterone selectively inhibits production of tumor necrosis factor alpha and interleukin-6 [correction of interlukin-6] in astrocytes. Int. J. Dev. Neurosci. 17, 765–775.

    Article  CAS  PubMed  Google Scholar 

  31. Di Santo E., Foddi M.C., Ricciardi-Castagnoli P., Mennini T., Ghezzi P. 1996. DHEAS inhibits TNF production in monocytes, astrocytes and microglial cells. Neuroimmunomodulation. 3, 285–288.

    Article  PubMed  Google Scholar 

  32. Dulos J., Verbraak E., Bagchus W.M., Boots A.M.H., Kaptein A. 2004. Severity of murine collagen-induced arthritis correlates with increased CYP7B activity: Enhancement of dehydroepiandrosterone metabolism by interleukin-1? Arthritis Rheum. 50, 3346–3353.

    Article  CAS  PubMed  Google Scholar 

  33. Morfin R., Courchay G. 1994. Pregnenolone and dehydroepiandrosterone as precursors of native 7-hydroxylated metabolites which increase the immune response in mice. J. Steroid Biochem. Mol. Biol. 50, 91–100.

    Article  CAS  PubMed  Google Scholar 

  34. Karishma K.K., Herbert J. 2002. Dehydroepiandrosterone (DHEA) stimulates neurogenesis in the hippocampus of the rat, promotes survival of newly formed neurons and prevents corticosterone-induced suppression. Eur. J. Neurosci. 16, 445–453.

    Article  CAS  PubMed  Google Scholar 

  35. Chen F., Knecht K., Birzin E., Fisher J., Wilkinson H., Mojena M., Moreno C.T., Schmidt A., Harada S., Freedman L.P., Reszka A.A. 2005. Direct agonist/antagonist functions of dehydroepiandrosterone. Endocrinology. 146, 4568–4576.

    Article  CAS  PubMed  Google Scholar 

  36. Liu D., Dillon J.S. 2004. Dehydroepiandrosterone stimulates nitric oxide release in vascular endothelial cells: Evidence for a cell surface receptor. Steroids. 69, 279–289.

    Article  CAS  PubMed  Google Scholar 

  37. Karbowska J., Kochan Z. 2013. Effects of DHEA on metabolic and endocrine functions of adipose tissue. Horm. Mol. Biol. Clin. Investig. 14, 65–74.

    CAS  PubMed  Google Scholar 

  38. Li J., Papadopoulos V., Vihma V. 2015. Steroid biosynthesis in adipose tissue. Steroids. 103, 89–104.

    Article  CAS  PubMed  Google Scholar 

  39. Kipp M., Hochstrasser T., Schmitz C., Beyer C. 2016. Female sex steroids and glia cells: Impact on multiple sclerosis lesion formation and fine tuning of the local neurodegenerative cellular network. Neurosci. Biobehav. Rev. 67, 125–136.

    Article  CAS  PubMed  Google Scholar 

  40. Loram L.C., Sholar P.W., Taylor F.R., Wiesler J.L., Babb J.A., Strand K.A., Berkelhammer D., Day H.E, Maier S.F., Watkins L.R. 2012. Sex and estradiol influence on glial pro-inflammatory responses to lipopolysaccharide in rats. Psychoneuroendocrinology. 37, 1688–1699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. De Marinis E., Acaz-Fonseca E., Arevalo M.A., Ascenzi P., Fiocchetti M., Marino M., Garcia-Segura L.M. 2013. 17-beta-estradiol anti-inflammatory effects in primary astrocytes require oestrogen receptor-beta-mediated neuroglobin up-regulation. J. Neuroendocrinol. 25, 260–270.

    Article  PubMed  Google Scholar 

  42. Santos-Galindo M., Acaz-Fonseca E., Bellini M.J., Garcia-Segura L.M. 2011. Sex differences in the inflammatory response of primary astrocytes to lipopolysaccharide. Biol. Sex Differ. 2, 7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Buyanova.

Additional information

Original Russian Text © S.M. Buyanova, D.V. Chistyakov, A.A. Astakhova, M.G. Sergeeva, 2017, published in Biologicheskie Membrany, 2017, Vol. 34, No. 5, pp. 22–29.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buyanova, S.M., Chistyakov, D.V., Astakhova, A.A. et al. The effect of dehydroepiandrosterone on inflammatory response of astroglial cells. Biochem. Moscow Suppl. Ser. A 11, 304–310 (2017). https://doi.org/10.1134/S199074781704002X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199074781704002X

Keywords

Navigation