Skip to main content

Advertisement

Log in

Neuroprotective Effects of Dehydroepiandrosterone Sulfate Through Inhibiting Expression of Matrix Metalloproteinase-9 from Bradykinin-Challenged Astroglia

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Dehydroepiandrosterone sulfate (DHEAS), one of the most important neuroactive steroids, is produced in the adrenals and the brain. DHEAS is believed to play a critical role in modulating different forms of cellular control, including processes associated with human neural systems. Its production rate and level in serum, adrenals, and brain gradually decrease with advancing age. The decline of DHEAS level was associated with age-related neuronal dysfunction and degeneration, most probably because the steroids protect the central nervous system (CNS) neurons against neurotoxic challenges. Moreover, increasing studies show that matrix metalloproteinases (MMPs), MMP-9 especially, are upregulated by proinflammatory mediators in the CNS disorders. The increased MMP-9 as an inflammatory biomarker of several CNS disorders that may participate in the CNS inflammation and neurodegeneration. Herein, we investigate the effects of DHEAS on brain inflammation by the model we have defined of bradykinin (BK)-induced MMP-9 expression in rat brain astrocyte (RBA) and its mechanism. The results showed that DHEAS significantly reduce MMP-9 induced by BK. Pretreatment with DHEAS can inhibit BK-stimulated phosphorylation of c-Src and PYK2. Moreover, DHEAS attenuated BK-stimulated NADPH oxidase (Nox)-derived reactive oxygen species (ROS) production, suggesting that DHEAS has an antioxidative effect. We further demonstrated that DHEAS blocked activation of ERK1/2, Akt, and c-Fos/AP-1 by BK. Finally, DHEAS decreased MMP-9-related events including RBA migration and neuronal apoptosis. The results will provide new insights into the anti-inflammatory action of DHEAS, supporting that DHEAS may have a neuroprotective effect in the improvement of the CNS disorders by reducing neuroinflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Baulieu EE (1996) Dehydroepiandrosterone (DHEA): A fountain of youth? J Clin Endocrinol Metab 81:3147–3151

    Article  CAS  PubMed  Google Scholar 

  2. Vermeulen A (1995) Dehydroepiandrosterone sulfate and aging. Ann N Y Acad Sci 774:121–127

    Article  CAS  PubMed  Google Scholar 

  3. Charalampopoulos I, Alexaki VI, Tsatsanis C, Minas V, Dermitzaki E, Lasaridis I, Vardouli L, Stournaras C et al (2006) Neurosteroids as endogenous inhibitors of neuronal cell apoptosis in aging. Ann N Y Acad Sci 1088:139–152

    Article  CAS  PubMed  Google Scholar 

  4. Chasalow FI, Blethen SL (1990) Digitalis-like materials and DHEA sulfate. In: Kalimi M, Regelson W (eds) The biology role of Dehydroepiandrosterone (DHEA). Walter de Gruyter press, berlin, pp. 317–330

    Google Scholar 

  5. Compagnone NA, Mellon SH (2000) Neurosteroids: Biosynthesis and function of these novel neuromodulators. Front Neuroendocrinol 21:1–56

    Article  CAS  PubMed  Google Scholar 

  6. Ueda H, Yoshida A, Tokuyama S, Mizuno K, Maruo J, Matsuno K, Mita S (2001) Neurosteroids stimulate G protein-coupled sigma receptors in mouse brain synaptic membrane. Neurosci Res 41:33–40

    Article  CAS  PubMed  Google Scholar 

  7. Dong L, Zhu Y, Dong Y, Yang J, Zhao Y, Qi Y, Wu P, Zhu Y et al (2009) Neuroactive steroid dehydroepiandrosterone sulfate inhibits 5-hydroxytryptamine (5-HT)-evoked glutamate release via activation of sigma-1 receptors and then inhibition of 5-HT3 receptors in rat prelimbic cortex. J Pharmacol Exp Ther 330:494–501

    Article  CAS  PubMed  Google Scholar 

  8. Chen L, Dai XN, Sokabe M (2006) Chronic administration of dehydroepiandrosterone sulfate (DHEAS) primes for facilitated induction of long-term potentiation via sigma 1 (sigma1) receptor: Optical imaging study in rat hippocampal slices. Neuropharmacology 50:380–392

    Article  CAS  PubMed  Google Scholar 

  9. Luppi C, Fioravanti M, Bertolini B, Inguscio M, Grugnetti A, Guerriero F, Rovelli C, Cantoni F et al (2009) Growth factors decrease in subjects with mild to moderate Alzheimer's disease (AD): Potential correction with dehydroepiandrosterone-sulphate (DHEAS). Arch Gerontol Geriatr 49(Suppl 1):173–184

    Article  CAS  PubMed  Google Scholar 

  10. Wang Y, Rao M (1998) Effects of dehydroepiandrosterone sulfate on mimetic aging actions of cerebral cortex of fetal rats in vitro. Yao Xue Xue Bao 33:413–417

    CAS  PubMed  Google Scholar 

  11. Zhang L, Li B, Ma W, Barker JL, Chang YH, Zhao W, Rubinow DR (2002) Dehydroepiandrosterone (DHEA) and its sulfated derivative (DHEAS) regulate apoptosis during neurogenesis by triggering the Akt signaling pathway in opposing ways. Brain Res Mol Brain Res 98:58–66

    Article  CAS  PubMed  Google Scholar 

  12. Leskiewicz M, Regulska M, Budziszewska B, Jantas D, Jaworska-Feil L, Basta-Kaim A, Kubera M, Jagla G et al (2008) Effects of neurosteroids on hydrogen peroxide- and staurosporine-induced damage of human neuroblastoma SH-SY5Y cells. J Neurosci Res 86:1361–1370

    Article  CAS  PubMed  Google Scholar 

  13. Di Santo E, Foddi MC, Ricciardi-Castagnoli P, Mennini T, Ghezzi P (1996) DHEAS inhibits TNF production in monocytes, astrocytes and microglial cells. Neuroimmunomodulation 3:285–288

    Article  PubMed  Google Scholar 

  14. Dollery CM, McEwan JR, Henney AM (1995) Matrix metalloproteinases and cardiovascular disease. Circ Res 77:863–868

    Article  CAS  PubMed  Google Scholar 

  15. Yong VW, Krekoski CA, Forsyth PA, Bell R, Edwards DR (1998) Matrix metalloproteinases and diseases of the CNS. Trends Neurosci 21:75–80

    Article  CAS  PubMed  Google Scholar 

  16. Yong VW, Power C, Forsyth P, Edwards DR (2001) Metalloproteinases in biology and pathology of the nervous system. Nat Rev Neurosci 2:502–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gottschall PE, Yu X (1995) Cytokines regulate gelatinase a, B (matrix metalloproteinase 2 and 9) activity in cultured rat astrocytes. J Neurochem 64:1513–1520

    Article  CAS  PubMed  Google Scholar 

  18. Lee WJ, Shin CY, Yoo BK, Ryu JR, Choi EY, Cheong JH, Ryu JH, Ko KH (2003) Induction of matrix metalloproteinase-9 (MMP-9) in lipopolysaccharide-stimulated primary astrocytes is mediated by extracellular signal-regulated protein kinase 1/2 (Erk1/2). Glia 41:15–24

    Article  PubMed  Google Scholar 

  19. Hsieh HL, Yang CM. (2013) Role of redox signaling in neuroinflammation and neurodegenerative diseases. Biomed Res Int 2013:484613, 1, 18.

  20. Demchenko IT, Oury TD, Crapo JD, Piantadosi CA (2002) Regulation of the brain’s vascular responses to oxygen. Circ Res 91:1031–1037

    Article  CAS  PubMed  Google Scholar 

  21. Halliwell B (2006) Oxidative stress and neurodegeneration: Where are we now? J Neurochem 97:1634–1658

    Article  CAS  PubMed  Google Scholar 

  22. Chrissobolis S, Faraci FM (2008) The role of oxidative stress and NADPH oxidase in cerebrovascular disease. Trends Mol Med 2008(14):495–502

  23. Kamata H, Hirata H (1999) Redox regulation of cellular signalling. Cell Signal 11:1–14

    Article  CAS  PubMed  Google Scholar 

  24. Chan PH (2001) Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb Blood Flow Metab 21:2–14

    Article  CAS  PubMed  Google Scholar 

  25. Lewén A, Matz P, Chan PH (2000) Free radical pathways in CNS injury. J Neurotrauma 17:871–890

    Article  PubMed  Google Scholar 

  26. Qin L, Liu Y, Wang T, Wei SJ, Block ML, Wilson B, Liu B, Hong JS (2004) NADPH oxidase mediates lipopolysaccharide-induced neurotoxicity and proinflammatory gene expression in activated microglia. J Biol Chem 279:1415–1421

    Article  CAS  PubMed  Google Scholar 

  27. Chiang WC, Chien CT, Lin WW, Lin SL, Chen YM, Lai CF, Wu KD, Chao J et al (2006) Early activation of bradykinin B2 receptor aggravates reactive oxygen species generation and renal damage in ischemia/reperfusion injury. Free Radic Biol Med 41:1304–1314

    Article  CAS  PubMed  Google Scholar 

  28. Lin CC, Hsieh HL, Shih RH, Chi PL, Cheng SE, Chen JC, Yang CM (2012) NADPH oxidase 2-derived reactive oxygen species signal contributes to bradykinin-induced matrix metalloproteinase-9 expression and cell migration in brain astrocytes. Cell Commun Signal 10:35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hsieh HL, Yen MH, Jou MJ, Yang CM (2004) Intracellular signalings underlying bradykinin-induced matrix metalloproteinase-9 expression in rat brain astrocyte-1. Cell Signal 16:1163–1176

    Article  CAS  PubMed  Google Scholar 

  30. Hsieh HL, Wu CY, Yang CM (2008) Bradykinin induces matrix metalloproteinase-9 expression and cell migration through a PKC-δ-dependent ERK/Elk-1 pathway in astrocytes. Glia 56:619–632

  31. Yang CM, Hsieh HL, Lin CC, Shih RH, Chi PL, Cheng SE, Hsiao LD (2013) Multiple factors from bradykinin-challenged astrocytes contribute to the neuronal apoptosis: Involvement of astroglial ROS, MMP-9, and HO-1/CO system. Mol Neurobiol 47:1020–1033

    Article  CAS  PubMed  Google Scholar 

  32. LeBel CP, Ischiropoulos H, Bondy SC (1992) Evaluation of the probe 2′,7′-dichlorofluorescein as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol 5:227–231

    Article  CAS  PubMed  Google Scholar 

  33. Reinehr R, Görg B, Becker S, Qvartskhava N., Bidmon HJ, Selbach, O, Haas HL, Schliess F, Häussinger D (2007) Hypoosmotic swelling and ammonia increase oxidative stress by NADPH oxidase in cultured astrocytes and vital brain slices. Glia 55:758–771.

  34. Lee HS, Moon C, Lee HW, Park EM, Cho MS, Kang JL (2007) Src tyrosine kinases mediate activations of NF-kappaB and integrin signal during lipopolysaccharide-induced acute lung injury. J Immunol 179:7001–7011

    Article  CAS  PubMed  Google Scholar 

  35. Yang CM, Yang SH, Lee TH, Fang JY, Lin CF, Jou MJ, Hsieh HL (2016) Evaluation of anti-inflammatory effects of Helminthostachys zeylanica extracts via inhibiting bradykinin-induced MMP-9 expression in brain astrocytes. Mol Neurobiol 53:5995–6005

    Article  PubMed  Google Scholar 

  36. Nelson KK, Melendez JA (2004) Mitochondrial redox control of matrix metalloproteinases. Free Radic Biol Med 37:768–784

    Article  CAS  PubMed  Google Scholar 

  37. Infanger DW, Sharma RV, Davisson RL (2006) NADPH oxidases of the brain: Distribution, regulation, and function. Antioxid Redox Signal 8:1583–1596

    Article  CAS  PubMed  Google Scholar 

  38. Hsieh HL, Wang HH, Wu WB, Chu PJ, Yang CM (2010) Transforming growth factor-β1 induces matrix metalloproteinase-9 and cell migration in astrocytes: Roles of ROS-dependent ERK- and JNK-NF-κB pathways. J Neuroinflammation 7:88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ralay Ranaivo H, Hodge JN, Choi N, Wainwright MS (2012) Albumin induces upregulation of matrix metalloproteinase-9 in astrocytes via MAPK and reactive oxygen species-dependent pathways. J Neuroinflammation 9:68

    PubMed  Google Scholar 

  40. Hsieh HL, Yang CM (2013) Role of redox signaling in neuroinflammation and neurodegenerative diseases. Biomed Res Int 2013:484613

    PubMed  PubMed Central  Google Scholar 

  41. Sato H, Seiki M (1993) Regulatory mechanism of 92 kDa type IV collagenase gene expression which is associated with invasiveness of tumor cells. Oncogene 8:395–405

    CAS  PubMed  Google Scholar 

  42. Rosenberg GA (2002) Matrix metalloproteinases in neuroinflammation. Glia 39:279–291

    Article  PubMed  Google Scholar 

  43. Kamiya T, Katayama Y, Kashiwagi F, Terashi A (1993) The role of bradykinin in mediating ischemic brain edema in rats. Stroke 24:571–575

    Article  CAS  PubMed  Google Scholar 

  44. Wu CY, Hsieh HL, Sun CC, Tseng CP, Yang CM (2008) IL-1β induces proMMP-9 expression via c-Src-dependent PDGFR/PI3K/Akt/p300 cascade in rat brain astrocytes. J Neurochem 105:1499–1512

  45. Floyd RA (1999) Neuroinflammatory processes are important in neurodegenerative diseases: A hypothesis to explain the increased formation of reactive oxygen and nitrogen species as major factors involved in neurodegenerative disease development. Free Radic Biol Med 26:1346–1355

    Article  CAS  PubMed  Google Scholar 

  46. Huerta-García E, Ventura-Gallegos JL, Victoriano ME, Montiél-Dávalos A, Tinoco-Jaramillo G, López-Marure R (2012) Dehydroepiandrosterone inhibits the activation and dysfunction of endothelial cells induced by high glucose concentration. Steroids 77:233–240

    Article  PubMed  Google Scholar 

  47. Ding X, Wang D, Li L, Ma H (2016) Dehydroepiandrosterone ameliorates H2O2-induced Leydig cells oxidation damage and apoptosis through inhibition of ROS production and activation of PI3K/Akt pathways. Int J Biochem Cell Biol 70:126–139

    Article  CAS  PubMed  Google Scholar 

  48. Liebmann C (2001) Bradykinin signalling to MAP kinase: Cell-specific connections versus principle mitogenic pathways. Biol Chem 382:49–55

    Article  CAS  PubMed  Google Scholar 

  49. Schwaninger M, Sallmann S, Petersen N, Schneider A, Prinz S, Libermann TA, Spranger M (1999) Bradykinin induces interleukin-6 expression in astrocytes through activation of nuclear factor-κB. J Neurochem 73:1461–1466

  50. Srivastava S, Sharma K, Kumar N, Roy P (2014) Bradykinin regulates osteoblast differentiation by Akt/ERK/NFκB signaling axis. J Cell Physiol 229:2088–2105

    Article  CAS  PubMed  Google Scholar 

  51. Fu C, Li B, Sun Y, Ma G, Yao Y (2015) Bradykinin inhibits oxidative stress-induced senescence of endothelial progenitor cells through the B2R/AKT/RB and B2R/EGFR/RB signal pathways. Oncotarget 6:24675–22489

    PubMed  PubMed Central  Google Scholar 

  52. Kim D, Kim S, Koh H, Yoon SO, Chung AS, Cho KS, Chung J (2001) Akt/PKB promotes cancer cell invasion via increased motility and metalloproteinase production. FASEB J 15:1953–1962

    Article  CAS  PubMed  Google Scholar 

  53. Bertoni A, Rastoldo A, Sarasso C, Di Vito C, Sampietro S, Nalin M, Bagarotti A, Sinigaglia F (2012) Dehydroepiandrosterone-sulfate inhibits thrombin-induced platelet aggregation. Steroids 77:260–268

    Article  CAS  PubMed  Google Scholar 

  54. Torres NI, Castilla V, Bruttomesso AC, Eiras J, Galagovsky LR, Wachsman MB (2012) In vitro antiviral activity of dehydroepiandrosterone, 17 synthetic analogs and ERK modulators against herpes simplex virus type 1. Antivir Res 95:37–48

    Article  CAS  PubMed  Google Scholar 

  55. Liu JY, Guo F, Wu HL, Wang Y, Liu JS (2017) Midazolam anesthesia protects neuronal cells from oxidative stress-induced death via activation of the JNK-ERK pathway. Mol Med Rep 15:169–179

    Article  CAS  PubMed  Google Scholar 

  56. Haddad JJ (2002) Oxygen-sensitive pro-inflammatory cytokines, apoptosis signaling and redox-responsive transcription factors in development and pathophysiology. Cytokines Cell Mol Ther 7:1–14

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science and Technology, Taiwan; Grant number: NSC102-2320-B-255-005-MY3 and MOST106-2320-B-255-005; Chang Gung Medical Research Foundation, Grant number: CMRPF1C0193, CMRPF3D0033, CMRPF1F0131, and CMRPF1F0132. We thank Ms. Yin-Chen Chen and Shu-Ching Hsu for their technical assistance. We also thank Professor Ying-Tung Lau for his support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hsi-Lung Hsieh.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liou, CJ., Yang, CM., Lee, TH. et al. Neuroprotective Effects of Dehydroepiandrosterone Sulfate Through Inhibiting Expression of Matrix Metalloproteinase-9 from Bradykinin-Challenged Astroglia. Mol Neurobiol 56, 736–747 (2019). https://doi.org/10.1007/s12035-018-1125-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-1125-6

Keywords

Navigation