Skip to main content
Log in

Mitochondrial cytopathies: Their causes and correction pathways

  • Reviews
  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

Mitochondrial cytopathies are a heterogeneous group of systemic disorders caused by mutations in mitochondrial or nuclear genome. The review presents some data on pathogenic mutations in mitochondrial DNA leading to the imbalance in the oxidation phosphorylation processes and energy metabolism in the cells and eventually to the development of mitochondrial cytopathy. The pathways of medicated correction are examined, which are aimed at obtaining optimal energy efficiency of mitochondria with impaired functions, increase of the efficiency of energy metabolism in the tissues, as well as prevention of mitochondrial membrane damage by free radicals using antioxidants and membrane protectors. A conclusion is drawn on the inefficiency of currently used therapeutic strategies and the necessity of new approaches, which can be gene therapy of mitochondrial diseases. Some modern methods for gene defects correction, capable of restoring or removing the damaged gene, expressing full gene product, or blocking the mutant or strange genes work are analyzed. It is shown that the described approaches to the gene therapy of human mitochondrial diseases demand the introduction of foreign sequences into nuclear or mitochondrial genome of a living person, which completely excludes their practical application because of the uncertainty of the outcome. A perspective approach in solving this problem may be a creation of a system allowing the correction of defect genes without introducing synthetic nucleotides into the human genome. Phenotypic selection combined with a capacity of homologous recombination, artificially imparted to mitochondria of yeast Yarrowia lipolytica, allows for replication of intact human mitochondrial DNA in yeast mitochondria, supporting a full-size native human mitochondrial DNA in the yeast cells and eliminating pathogenic mutations by means of standard sitedirected PCR mutagenesis. After the correction in the Y. lipolytica cells, copies of mitochondrial DNA of an individual patient may be returned to him using the transfection of mesenchymal stromal cells followed by selection of transfectants grown in minimal culture media, in which the cells with higher respiratory mitochondrial activity will gain the advantage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mazunin I.O., Volod’ko N.V., Starikovskaya E.B., Sukernik R.I. 2010. Human mitochondrial genome and mitochondrial diseases. Molekulyarnaya biologiya (Rus.). 44 (5), 755–772.

    CAS  Google Scholar 

  2. Harbauer A.B., Zahedi R.P., Sickmann A., Pfanner N., Meisinger C. 2014. The protein import machinery of mitochondria a regulatory hub in metabolism, stress, and disease. Cell Metab. 4, 357–372.

    Article  Google Scholar 

  3. Spelbrink J.N. 2010. Functional organization of mammalian mitochondrial DNA in nucleoids: History, recent developments, and future challenges. IUBMB Life. 62, 19–32.

    CAS  PubMed  Google Scholar 

  4. Nikitina L.P., Kuznetsova N.S., Gomboyeva A.Ts., Solovyeva N.V. 2011. Mitochondrial diseases, basic principles of their genetic classification (literature review), report II. Zabaykalskiy Med. Vestn. (Rus.). 2, 184–190.

    Google Scholar 

  5. Sverdlov E.D. 2009. Vzglyad na zhizn cherez okno genoma (The view of life through the genome window). Vol. 1. Moscow: Nauka. ISBN 978-5-02-034331-3, 978-5-02-034325-2.

    Google Scholar 

  6. Todorov I.N., Todorov G.I. 2009. Multifactor nature of high incidence of mtDNA mutations in mammalian somatic cells. Biochemistry (Moscow). 74, 971–979.

    Article  Google Scholar 

  7. Patrushev M.V., Kamensky P.A., Mazunin I.O. 2014. Mitochondrial DNA mutations and methods of their correction. Biochemistry (Moscow). 79 (11), 1151–1161.

    CAS  PubMed  Google Scholar 

  8. Lightowler R.N., Chinnery P.F., Turnbull D.M., Howell N. 1997. Mammalian mitochondrial genetics: Heredity, heteroplasmy and disease. Trends Genet. 13, 450–455.

    Article  Google Scholar 

  9. Kmiec B., Woloszynska M., Janska H. 2006. Heteroplasmy as a common state of mitochondrial genetic information in plants and animals. Curr. Genet. 50, 149–159.

    Article  CAS  PubMed  Google Scholar 

  10. Cummins J.M. 2000. Fertilization and elimination of paternal mitochondrial genome. Hum. Reprod. 15, 92–101.

    Article  PubMed  Google Scholar 

  11. Hiraoka J., Hirao Y. 1988. Fate of sperm tail components after incorporation into the hamster egg. Gamete Res. 19, 369–380.

    Article  CAS  PubMed  Google Scholar 

  12. Zhao X., Li N., Guo W., Hu X., Liu Z., Gong G., Wang A., Feng J., Wu C. 2004. Further evidence for paternal inheritance of mitochondrial DNA in the sheep (Ovis aries). Heredity. 93, 399–403. doi 10.1038/sj.hdy.6800516

    Article  CAS  PubMed  Google Scholar 

  13. St. John J.C., Schatten G. 2004. Paternal mitochondrial DNA transmission during nonhuman primate nuclear transfer. Genetics. 167, 897–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fontaine K.M., Cooley J.R., Simon C. 2007. Evidence for paternal leakage in hybrid periodical cicadas (Hemiptera: Magicicada spp.). PLoS One. 2, e892.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Dokianakis E., Ladoukakis E.D. 2014. Different degree of paternal mtDNA leakage between male and female progeny in interspecific Drosophila crosses. Ecol. Evol. 4, 2633–2641. doi 10.1002/ece3.106

    Article  PubMed  PubMed Central  Google Scholar 

  16. Song W.H., Ballard J.W., Yi Y.J., Sutovsky P. 2014. Regulation of mitochondrial genome inheritance by autophagy and ubiquitin-proteasome system: Implications for health, fitness, and fertility. Biomed. Res. Int. 981867. doi 10.1155/2014/981867

  17. Sutovsky P., McCauley T.C., Sutovsky M., Day B.N. 2003. Early degradation of paternal mitochondria in domestic pig (Sus scrofa) is prevented by selective proteasomal inhibitors lactacystin and MG132. Biol. Reprod. 68, 1793–1800.

    Article  CAS  PubMed  Google Scholar 

  18. Plotnikov E.Yu., Babenko V.A., Silachev D.N., Zorova L.D., Khryapenkova T.G., Savchenko E.S., Pevzner I.B., Zorov D.B. 2015. Intercellular transport of mitochondria. Biochemistry (Moscow). 80 (5), 542–548.

    CAS  PubMed  Google Scholar 

  19. Wallace D.C., Lott M.T., Brown M.D., Kerstann K. 2001. Mitochondria and neuroophthalmologic diseases. In: The metabolic and molecular basis of inherited disease. Eds. Sctiver C.R., Beavdet A.L., Valle D.N.Y. VcGraw-Hill. 2, H2425–2512.

    Google Scholar 

  20. Swalwell H., Kirby D.M., Blakely E.L., Mitchell A., Salemi R., Sugiana C., Compton A.G., Tucker E.J., Ke B.X., Lamont P.J., Turnbull D.M., McFarland R., Taylor R.W., Thorburn D.R. 2011. Respiratory chain complex I deficiency caused by mitochondrial DNA mutations. Eur. J. Hum. Genet. 19 (7), 769–775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Carelli V., La Morgia C., Valentino M.L., Barboni P., Ross-Cisneros F.N., Sadun A.A. 2009. Retinal gangli on cell neurodegeneration in mitochondrial inherited disorders. Biochim. Biophys. Acta. 1787, 518–528.

    Article  CAS  PubMed  Google Scholar 

  22. Yu-Wai-Man P., Griffiths P.G., Hudson G., Chinnery P.F. 2009. Inherited mitochondrial optic neuropathies. J. Med. Genet. 46, 145–158.

    Article  CAS  PubMed  Google Scholar 

  23. Rotig A. 2010. Genetic bases of mitochondrial respiratory chain disorders. Diabetes Metab. 36, 97–107.

    Article  CAS  PubMed  Google Scholar 

  24. A Human Mitochondrial Genome Database. 2009. www. mitomap.org

  25. Finsterer J. 2007. Genetic, pathogenetic, and phenotypic implications of the mitochondrial A324. G tRNAL-eu(UUR) mutation. Acta Neurol. Scand. 116, 1–14.

    Article  CAS  PubMed  Google Scholar 

  26. Ugol'nik T.S., Manaenkova I.V. 2012. Nasledstvennye mitokhondrial’nye zabolevaniya (Hereditary mitochondrial diseases). Gomel State Medical University. ISBN 978-985-506-414-6.

    Google Scholar 

  27. Sukernik R.I., Derbeneva O.A., Starikovskaya E.B., Volod’ko N.V., Mikhaylovskaya I.E., Bychkov I.Yu., Lott M.T., Brown M.D., Wallace D.C. 2002. Human mitochondrial genome and mitochondrial diseases. Genetika (Rus.). 38 (2), 1–10.

    Google Scholar 

  28. Zorov D.B., Isaev N.K., Plotnikov E.Yu., Silachev D.N., Zorova L.D., Pevzner I.B., Morosanova M.A., Jankauskas S.S., Zorov S.D., Babenko V.A. 2013. Prospects of mitochondrial medicine. Biochemistry (Moscow). 78 (9), 979–990.

    Article  CAS  PubMed  Google Scholar 

  29. Joshi R., Strebel H.-P. 2003. Use of fumaric acid derivatives for treating mitochondrial diseases. US Patent 20030013761. A1.

    Google Scholar 

  30. Auguet M., De Lassauniere P.-E. C., Harnett J. 2006. Using thiazole derivatives for preparing medicinal agent designated for mitochondrion protection. Fr. Patent CA245563. A1.

    Google Scholar 

  31. von Borstel R. 2007. Compositions and methods for treatment of mitochondrial diseases. US Patent 20070010479. A1.

    Google Scholar 

  32. Skulachev V.P. 2008. A method of action on organism by the targeted delivery of biologically active substances into mitochondria, a pharmaceutical composition for its implementation, and a compound used for this purpose. RF Patent 02318500. C2.

    Google Scholar 

  33. Severina I.I., Severin F.F., Korshunova G.A., Sumbatyan N.V., Ilyasova T.M., Simonyan R.A., Rogov A.G., Trendeleva T.A., Zvyagilskaya R.A., Dugina V.B., Domnina L.V., Fetisova E.K., Lyamzaev K.G., Vyssokikh M.Y., Chernyak B.V., Skulachev M.V., Skulachev V.P., Sadovnichii V.A. 2013. In search of novel highly active mitochondria-targeted antioxidants: Thymoquinone and its cationic derivatives. FEBS Lett. 587, 2018–2024.

    Article  CAS  PubMed  Google Scholar 

  34. Skulachev V.P. 2013. Cationic antioxidants as a powerful tool against mitochondrial oxidative stress. Biochem. Biophys. Res. Commun. 441, 275–279.

    Article  CAS  PubMed  Google Scholar 

  35. Lukashev A.N., Skulachev M.V., Ostapenko V., Savchenko A.Y., Pavshintsev V.V., Skulachev V.P. 2014. Advances in development of rechargeable mitochondrial antioxidants. Prog. Mol. Biol. Transl. Sci. 127, 251–265.

    Article  CAS  PubMed  Google Scholar 

  36. Kim S.H., Kim H.J., Park H.S., Gu S.Y., Kwak H.S., Park D.H., Kim H.S., Cho H.J., Kim J.H., Kim J.Y., Park K.M. 2011. Pharmaceutical composition comprising indole compound. Patent WO2011052950. A3.

    Google Scholar 

  37. Delumeau J.-C., Martinet M., Reibaud M., Stutzmann J.-M. 1995. Application du riluzole dans le traitement des maladies mitochondriales. Fr. Patent WO1995019170. A1.

    Google Scholar 

  38. Bacman S.R., Williams S.L., Garcia S., Moraes C.T. 2010. Organ specific shifts in mtDNA heteroplasmy following systemic delivery of a mitochondria targeted restriction endonuclease. Gene Ther. 17, 713–720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Doyle S.R., Chan C.K. 2009. Mitochondrial gene therapy: An evaluation of strategies for the treatment of mitochondrial DNA disorders. Hum. Gene Therapy. 19, 1355–1348.

    Google Scholar 

  40. Tonin Y., Heckei A.M., Dovydenko I., Meshaninova M., Comte C., Venyaminova A., Pyshnyi D., Tarassov I., Entelis N. 2014. Characterization of chemically modified oligonucleotides targeting a pathogenic mutation in human mitochondrial DNA. Biochimie. 100, 192–199.

    Article  CAS  PubMed  Google Scholar 

  41. Gammage P.A., Rorbach J., Vincent A.I., Rebar E.J., Minczuk M. 2014. Mitochondrial targeted ZFNs for selective degradation of pathogenic mitochondrial genomes bearing large-scale deletions or point mutation. EMBO Mol. Med. 6, 458–466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bacman S.R., Williams S.L., Pinto M., Peralta S., Moraes C.T. 2013. Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs. Nat. Med. 19 (9), 1111–1113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Moraes C.T. 2014. A magic bullet to specifically eliminate mutated mitochondrial genomes from patients' cells. EMBO Mol. Med. 6 (4), 434–435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cermak T., Doyle E.L., Christian M., Wang L., Zhang Y., Voytas D.F. 2011. Efficient design and assembly of custom TALEN and other TAL effector based constructs for DNA targeting. Nucl. Acids Res. 39. e82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sanz A., Soilihi H., Portero-Otin M., Wilson A., Kemppainen E., McIlroy G., Ellilä S., Kemppainen K.K., Tuomela T., Lakanmaa M., Kiviranta E., Stefanatos R., Dufour E., Hutz B., Naudí A., Jové M., Zeb A., Vartiainen S., Matsuno-Yagi A., Yagi T., Rustin P., Pamplona R., Jacobs H.T. 2010. Expression of the yeast NADH dehydrogenase Ndi1 in Drosophila confers increased lifespan independently of dietary restriction. Proc. Natl. Acad. Sci. USA. 107 (20), 9105–9110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Marella M., Seo B.B., Thomas B.B., Matsuno-Yagi A., Yagi T. 2010. Successful amelioration of mitochondrial optic neuropathy using the yeast NDI1 gene in a rat animal model. PLoS One. 5, e11472.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Chadderton N., Arpad P., Millington-Ward S., Gobbo O., Overlack N., Carrigan M., O’Reilly M., Campbell M., Ehrhardt C., Wolfrum U., Humphries P., Kenna P.F., Farrar G.J. 2013. Intravitreal delivery of AAV-NDI1 provides functional benefit in a murine model of Leber hereditary optic neuropathy. Eur. J. Hum. Genet. 21 (1), 62–68.

    Article  CAS  PubMed  Google Scholar 

  48. Sander J.D., Joung J.K. 2014. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol. 32, 347–355. doi 10.1038/nbt.2842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fogleman S., Santana C., Bishop C., Miller A., Capco D.G. 2016. CRISPR/Cas9 and mitochondrial gene replacement therapy: Promising techniques and ethical considerations. Am. J. Stem Cells. 5, 39–52.

    PubMed  PubMed Central  Google Scholar 

  50. Kolesnikova O., Kazakova H., Comte C., Steinberg S., Kamenski P., Martin R.P., Tarassov I., Entelis N. 2010. Selection of RNA aptamers imported into yeast and human mitochondria. RNA. 16 (5), 926–941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Suzuki T., Nagao A., Suzuki T. 2011. Human mitochondrial tRNAs: Biogenesis, function, structural aspects, and diseases. Annu. Rev. Genet. 45, 299–329.

    Article  CAS  PubMed  Google Scholar 

  52. Wang G., Shimada E., Zhang J., Hong J.S., Smith G.M., Teitell M.A., Koehler C.M. 2012. Correcting human mitochondrial mutations with targeted RNA import. Proc. Natl. Acad. Sci. USA. 109, 4840–4845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Karicheva O.Z., Kolesnikova O.A., Schirtz T., Vysokikh M.Y., Mager-Heckel A.M., Lombes A., Boucheham A., Krasheninnikov I.A., Martin R.P., Entelis N., Tarassov I. 2011. Correction of the consequences of mitochondrial 324. A>G mutation in the MT-TL1 gene causing the MELAS syndrome by tRNA import into mitochondria. Nucl. Acids Res. 39, 8173–8186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Comte C., Tonin Y., Heckel-Mager A.M., Boucheham A., Smirnov A., Auré K., Lombès A., Martin R.P., Entelis N., Tarassov I. 2013. Mitochondrial targeting of recombinant RNAs modulates the level of a heteroplasmic mutation in human mitochondrial DNA associated with Kearns Sayre syndrome. Nucl. Acids Res. 41 (1), 418–433.

    Article  CAS  PubMed  Google Scholar 

  55. Yousif L.F., Stewart K.M., Kelley S.O. 2009. Targeting mitochondria with organelle specific compounds: Strategies and applications. ChemBioChem. 10 (12), 1939–1950.

    Article  CAS  PubMed  Google Scholar 

  56. Yousif L.F., Stewart K.M., Horton K.L., Kelley S.O. 2009. Mitochondria penetrating peptides: Sequence effects and model cargo transport. ChemBioChem. 10 (12), 2081–2088.

    Article  CAS  PubMed  Google Scholar 

  57. Boddapati S.V., D’Souza G.G., Weissig V. 2010. Liposomes for drug delivery to mitochondria. Methods Mol. Biol. 605, 295–303.

    Article  CAS  PubMed  Google Scholar 

  58. Michaud M., Ubrig E., Filleur S., Erhardt M., Ephritikhine G., Marechal-Drouardand L., Duchene A.M. 2014. Differential targeting of VDAC3 mRNA isoforms influences mitochondria morphology. Proc. Natl. Acad. Sci. USA. 111 (24), 8991–8996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wang G., Shimada E., Koehler C.M., Teitell M.A. 2012. PNPASE and RNA trafficking into mitochondria. Biochim. Biophys. Acta. 1819, 998–1007.

    Article  CAS  PubMed  Google Scholar 

  60. Sakhrani N.M., Padh H. 2013. Organelle targeting: Third level of drug targeting. Drug Des. Devel. Ther. 7, 585–599.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Biswas S., Torchilin V.P. 2014. Nanopreparations for organelle specific delivery in cancer. Adv. Drug Deliv. Rev. 66, 26–41.

    Article  CAS  PubMed  Google Scholar 

  62. Campbell C.T., Kolesar J.E., Kaufman B.A. 2012. Mitochondrial transcription factor A regulates mitochondrial transcription initiation, DNA packaging, and genome copy number. Biochim. Biophys. Acta. 1819 (9–10), 921–929.

    Article  CAS  PubMed  Google Scholar 

  63. Wang G., Chen H.W., Oktay Y., Zhang J., Allen E.L., Smith G.M., Fan K.C., Hong J.S., French S.W., McCaffery J.M., Lightowlers R.N., Morse H.C., Koehler C.M., Teitell M.A. 2010. PNPASE regulates RNA import into mitochondria. Cell. 142, 456–467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wang G., Shimada E., Zhang J., Hong J.S., Smith G.M., Teitell M.A., Koehler C.M. 2012. Correcting human mitochondrial mutations with targeted RNA import. Proc. Natl. Acad. Sci. USA. 109, 4840–4845. doi 10.1073/pnas.1116792109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Amato P., Tachibana M., Sparman M., Mitalipov S. 2014. Three-parent in vitro fertilization: Gene replacement for the prevention of inherited mitochondrial diseases. Fertil. Steril. 101, 31–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Tachibana M., Amato P., Sparman M., Woodward J., Sanchis D.M., Ma H., Gutierrez N.M., Tippner-Hedges R., Kang E., Lee H.S., Ramsey C., Masterson K., Battaglia D., Lee D., Wu D., Jensen J., Patton P., Gokhale S., Stouffer R., Mitalipov S. 2013. Towards germline gene therapy of inherited mitochondrial diseases. Nature. 493, 627–631.

    Article  CAS  PubMed  Google Scholar 

  67. Cree L., Loi P. 2015. Mitochondrial replacement: From basic research to assisted reproductive technology portfolio tool—technicalities and possible risks. Mol. Hum. Reprod. 21, 3–10. doi 10.1093/molehr/gau082

    Article  CAS  PubMed  Google Scholar 

  68. Liu H., Wang C.W., Grifo J.A., Krey L.C., Zhang J. 1999. Reconstruction of mouse oocytes by germinal vesicle transfer: Maturity of host oocyte cytoplasm determines meiosis. Hum. Reprod. 14, 2357–2361.

    Article  CAS  PubMed  Google Scholar 

  69. Zhang J. 2015. Revisiting germinal vesicle transfer as a treatment for aneuploidy in infertile women with diminished ovarian reserve. J. Assist. Reprod. Genet. 32, 313–317.

    Article  PubMed  Google Scholar 

  70. Barritt J., Willadsen S., Brenner C., Cohen J. 2001. Cytoplasmic transfer in assisted reproduction. Hum. Reprod. Update. 7, 428–435.

    Article  CAS  PubMed  Google Scholar 

  71. Sanchis D.M., Ma H., Gutierrez N.M., Tippner-Hedges R., Kang E., Lee H.S., Ramsey C., Masterson K., Battaglia D., Lee D., Wu D., Jensen J., Patton P., Gokhale S., Stouffer R., Mitalipov S. 2013. Towards germline gene therapy of inherited mitochondrial diseases. Nature. 493, 627–631.

    PubMed  Google Scholar 

  72. Tachibana M., Amato P., Sparman M., Woodward J., Bredenoord A.L., Dondorp W., Pennings G., DeWert, G. 2011. Ethics of modifying the mitochondrial genome. J. Med. Ethics. 37, 97–100.

    Article  Google Scholar 

  73. Tachibana M., Sparman M., Sritanaudomchai H., Ma H., Clepper L., Woodward J., Li Y., Ramsey C., Kolotushkina O., Mitalipov S. 2009. Mitochondrial gene replacement in primate offspring and embryonic stem cells. Nature. 461, 367–372. doi 10.1038/nature08368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gorman G.S., Grady J.P., Yi Ng, Schaefer A.M., McNally R.J., Chinnery P.F., Yu- Wai-Man P., Herbert M., Taylor R.W., McFarland R., Turnbull D.M. 2015. Mitochondrial donation — how many women could benefit? N. Engl. J. Med. 372, 885–887. doi 10.1056.NEJMc1500960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hayakawa K., Esposito E., Wang X., Terasaki Y., Liu Y., Xing C., Ji X.,, Lo E.H. 2016. Transfer of mitochondria from astrocytes to neurons after stroke. Nature. 535, 551–555. doi 10.1038/nature18928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Rustom A., Saffrich R., Markovic I., Walther P., Gerdes H.H. 2004. Nanotubular highways for intercellular organelle transport. Science. 303, 1007–1010.

    Article  CAS  PubMed  Google Scholar 

  77. Marzo L., Gousset K., Zurzolo C. 2012. Multifaceted roles of tunneling nanotubes in intercellular communication. Front Physiol. 3, 1–14.

    Article  Google Scholar 

  78. Torralba D., Baixauli F., Sánchez-Madrid F. 2016. Mitochondria know no boundaries: Mechanisms and functions of intercellular mitochondrial transfer. Front. Cell Dev. Biol. 4, 107. doi 10.3389/fcell.2016.00107

    Article  PubMed  PubMed Central  Google Scholar 

  79. Sinha P., Islam M.N., Bhattacharya S., Bhattacharya J. 2016. Intercellular mitochondrial transfer: Bioenergetic crosstalk between cells. Curr. Opin. Genet. Dev. 38, 97–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ahmad T., Mukherjee S., Pattnaik B., Kumar M., Singh S., Kumar M., Rehman R., Tiwari B.K., Jha K.A., Barhanpurkar A.P., Wani M.R., Roy S.S., Mabalirajan U., Ghosh B., Agrawal A. 2014. Miro1 regulates intercellular mitochondrial transport and enhances mesenchymal stem cell rescue efficacy. EMBO J. 33, 994–1010.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Spees J.L., Olson S.D., Whitney M.J., Prockop D.J. 2006. Mitochondrial transfer between cells can rescue aerobic respiration. Proc. Natl. Acad. Sci. USA. Cell Biol. 103, 1283–1288. doi 10.1073/pnas.0510511103

    Article  CAS  Google Scholar 

  82. Islam M.N., Das S.R., Emin M.T., Wei M., Sun L., Westphalen K., Rowlands D.J., Quadri S.K., Bhattacharya S., Bhattacharya J. 2012. Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury. Nat. Med. 18, 759–765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Li X., Zhang Y., Yeung S.C., Liang Y., Liang X., Ding Y., Ip M.S., Tse H.F., Mak J.C., Lian Q. 2014. Mitochondrial transfer of induced pluripotent stem cell-derived mesenchymal stem cells to airway epithelial cells attenuates cigarette smoke-induced damage. Am. J. Resp. Cell Mol. Biol. 51, 455–446.

    Article  Google Scholar 

  84. Ma H., Folmes C.D., Wu J., Morey R., Mora-Castilla S., Ocampo A., Ma L., Poulton J., Wang X., Ahmed R., Kang E., Lee Y., Hayama T., Li Y., Van Dyken C., Gutierrez N.M., Tippner-Hedges R., Koski A., Mitalipov N., Amato P., Wolf D.P., Huang T., Terzic A., Laurent L.C., Izpisua Belmonte J.C., Mitalipov S. 2015. Metabolic rescue in pluripotent cells from patients with mtDNA disease. Nature. 524, 234–238. doi 10.1038/nature14546

    Article  CAS  PubMed  Google Scholar 

  85. Isakova E.P., Deryabina Yu.I., Belyakova A.V., Biryukova Yu.K., Teplova V.V., Shevelev A.B. 2016. The genetic system for human mitochondrial genome maintenance in the yeast Yarrowia lipolytica. Appl. Biochem. Microbiol. 52, 663–672.

    Article  CAS  Google Scholar 

  86. Gonçalves F.A.G., Colen G., Takahashi J.A. 2013. Optimization of cultivation conditions for extracellular lipase production by Yarrowia lipolytica using response surface method. Afr. J. Biotechnol. 12, 2270–2278.

    Article  Google Scholar 

  87. Liu J., Sneeden J., Heyer W.D. 2011. In vitro assays for DNA pairing and recombination-associated DNA synthesis. Methods Mol. Biol. 745, 363–383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Isakova E.P., Deryabina Yu.I., Sekova V.Yu., Zyl’kova M.V., Kudykina Yu.K., Teplova V.V. 2015. Novel genetic system for protein transport across the mitochondrial membrane of Yarrowia lipolytica. Biol. Membrany (Rus.). 12, 346–351.

    Google Scholar 

  89. Isakova E.P., Epova E.Yu., Sekova V.Yu., Trubnikova E.V., Kudykina Yu.K., Zyl’kova M.V., Guseva M.A., Deryabina Yu.I. 2015. Construction of the Yarrowia lipolytica yeast strains capable of homologous recombination of mitochondrial genome. Appl. Biochem. Microbiol. 51, 336–341.

    Article  CAS  Google Scholar 

  90. Isakova E.P., Deryabina Yu.I., Leonovich O.A., Zyl’kova M.V., Biryukova Yu.K. 2016. The study of accumulation of Bacillus subtilis protein RecA in the mitochondria of the recombinant Yarrowia lipolytica yeast strain. Appl. Biochem. Microbiol. 52, 174–183.

    CAS  Google Scholar 

  91. Nicaud J.M. 2012. Yarrowia lipolytica. Yeast. 29, 409–418.

    Article  CAS  PubMed  Google Scholar 

  92. Fritsch E.S., Chabbert C.D., Klaus B., Steinmetz L.M. 2014. A genome-wide map of mitochondrial DNA recombination in yeast. Genetics. 198, 755–771.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Babaev A.A. Ezhova G.P., Novikova N.A., Novikov V.V. 2007. Gennaya terapiya: korrektsiya geneticheskoi informatsii (Gene therapy: Correction of genetic information). Nizhny Novgorod: Lobachevsky State University of Nizhny Novgorod.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Teplova.

Additional information

Original Russian Text © V.V. Teplova, Yu.I. Deryabina, E.P. Isakova, 2017, published in Biologicheskie Membrany, 2017, Vol. 34, No. 2, pp. 91–108.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teplova, V.V., Deryabina, Y.I. & Isakova, E.P. Mitochondrial cytopathies: Their causes and correction pathways. Biochem. Moscow Suppl. Ser. A 11, 87–102 (2017). https://doi.org/10.1134/S1990747817020088

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747817020088

Keywords

Navigation