Skip to main content
Log in

Mathematical model of action potential in higher plants with account for the involvement of vacuole in the electrical signal generation

  • Articles
  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

Electrical signals, including action potential (AP), play an important role in plant adaptation to the changing environmental conditions. Experimental and theoretical investigations of the mechanisms of AP generation are required to understand the relationships between environmental factors and electrical activity of plants. In this work we have elaborated a mathematical model of AP generation, which takes into account the participation of vacuole in the generation of electrical response. The model describes the transporters of the plasma membrane (Ca2+, Cl, and K+ channels, H+- and Ca2+-ATPases, H+/K+ antiporter, and 2H+/Cl symporter) and the tonoplast (Ca2+, Cl, and K+ channels; H+- and Ca2+-ATPases; H+/K+, 2H+/Cl, and 3H+/Ca2+ antiporters), with due consideration of their regulation by second messengers (Ca2+ and IP3). The apoplastic, cytoplasmic and vacuolar buffers are also described. The properties of the simulated AP are in good agreement with experimental data. The AP model describes the attenuation of electrical signal with an increase in the vacuole area and volume; this effect is related to a decrease in the Ca2+ spike magnitude. The electrical signal was weakly influenced by the K+ and Cl content in the vacuole. It was also shown that the contribution of vacuolar IP3-dependent Ca2+ channels into the generation of calcium spike during AP was insignificant with the given parameters of the model. The results provide theoretical evidence for the significance of the vacuolar area and volume in plant cell excitability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Martonosi A.N. 2000. Animal electricity, Ca2+ and muscle contraction. A brief history of muscle research. Acta Biochim. Pol. 47, 493–516.

    CAS  PubMed  Google Scholar 

  2. Burdon-Sanderson J. 1873. Note on the electrical phenomena which accompany stimulation of the leaf of Dionaea muscipula. Philos. Proc. R. Soc. Lond. 21, 495–496.

    Article  Google Scholar 

  3. Bose J.C. 1926. The nervous mechanism of plant. London: Longmans, Green et Co.

    Google Scholar 

  4. Trebacz K., Zawadzki T. 1985. Light-triggered action potentials in the liverwort Conocephalum conicum. Physiol. Plant. 64, 482–486.

    Article  Google Scholar 

  5. Opritov V.A., Pyatygin S.S., Retivin V.G. 1991. Bioelektrogenez u vysshikh rasteniy (Bioelectrogenesis in Higher Plants), Moscow: Nauka.

    Google Scholar 

  6. Stahlberg R., Cleland R.E., Volkenburgh E. 2006. Slow wave potentials–a propagating electrical signal unique to higher plants. In: Communication in Plants. Baluška F., Mancuso S., Volkmann D., Eds. Berlin Heidelberg: Springer-Verlag, pp. 291–308.

    Chapter  Google Scholar 

  7. Fromm J., Spanswick R. 1993. Characteristics of action potentials in willow (Salix viminalis L.). J. Exp. Bot. 44, 1119–1125.

    Article  Google Scholar 

  8. Felle H.H., Zimmermann M.R. 2007. Systemic signalling in barley through action potentials. Planta. 226, 203–214.

    Article  CAS  PubMed  Google Scholar 

  9. Król E., Dziubinska H., Trebacz K. 2010. What do plants need action potentials for? In: Action potential: Biophysical and cellular context, initiation, phases and propagation. DuBois M.L., Ed. New York: Nova Sci. Publ., pp. 1–26.

    Google Scholar 

  10. Shiina T., Tazawa M. 1986. Action potential in Luffa cylindrical and its effects on elongation growth. Plant Cell. Physiol. 27, 1081–1089.

    Google Scholar 

  11. Trebacz K., Dziubinska H., Król E. 2006. Electrical signals in longdistance communication in plants. In: Communication in plants. Neuronal aspects of plant life. Baluska F., Mancuso S., Volkmann D., Eds. Berlin: Springer, pp. 277–290.

    Google Scholar 

  12. Retivin V.G., Opritov V.A., Abramova N.N., Lobov S.A., Fedulina S.B. 1999. The ATP level in phloem exudates from the stem of a higher plant after the propagation of electrical responses to burn and cooling. Vestn. Nizhegorodskogo universiteta im. N.I. Lobachevskogo. Biology series. (Rus.). 1, 124–131.

    Google Scholar 

  13. Surova L., Sherstneva O., Vodeneev V., Katicheva L., Semina M., Sukhov V. 2016. Variation potentialinduced photosynthetic and respiratory changes increase ATP content in pea leaves. J. Plant Physiol. 202, 57–64. doi 10.1016/j.jplph.2016.05.024

    Article  CAS  PubMed  Google Scholar 

  14. Fromm J., Lautner S. 2007. Electrical signals and their physiological significance in plants. Plant Cell Environ. 30, 249–257.

    Article  CAS  PubMed  Google Scholar 

  15. Sinyukhin A.M. 1973. Functional activity of action potential in ferns and mosses during fertilization. Biofizika (Rus.). 18, 477–482.

    CAS  Google Scholar 

  16. Sukhov V. 2016. Electrical signals as mechanism of photosynthesis regulation in plants. Photosynth. Res. 130, 373–387. doi 10.1007/s11120-016-0270-x

    Article  CAS  PubMed  Google Scholar 

  17. Koziolek C., Grams T.E.E., Schreiber U., Matyssek R., Fromm J. 2004. Transient knockout of photosynthesis mediated by electrical signals. New Phytol. 161, 715–722.

    Article  CAS  Google Scholar 

  18. Lautner S., Grams T.E.E., Matyssek R., Fromm J. 2005. Characteristics of electrical signals in poplar and responses in photosynthesis. Plant Physiol. 138, 2200–2209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pavlovic A., Slováková L., Pandolfi C., Mancuso S. 2011. On the mechanism underlying photosynthetic limitation upon trigger hair irritation in the carnivorous plant Venus flytrap (Dionaea muscipula Ellis). J. Exp. Bot. 62, 1991–2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dziubinska H., Trebacz K., Zawadzki T. 1989. The effect of excitation on the rate of respiration in the liverwort Conocephalum conicum. Physiol. Plant. 75, 417–423.

    Article  Google Scholar 

  21. Retivin V.G., Opritov V.G., Fedulina S.B. 1997. Action potential-induced preadaptation of tissues of the Cucurbita pepo stem to the damaging effect of low temperatures. Fiziologiya rasteniy (Rus.). 44, 499–510.

    Google Scholar 

  22. Opritov V.A. 1998. Funktsional’nye aspekty bioelektrogeneza u vysshikh rasteniy. 59-e Timiryazevskoye chteniye (Functional aspects of bioelectrogenesis in higher plants. The 59th Timiryazev readings). Nizhny Novgorod: NNGU.

    Google Scholar 

  23. Sukhov V., Surova L., Sherstneva O., Bushueva A., Vodeneev V. 2015. Variation potential induces decreased PSI damage and increased PSII damage under high external temperatures in pea. Funct. Plant Biol. 42, 727–736.

    Article  Google Scholar 

  24. Surova L., Sherstneva O., Vodeneev V., Sukhov V. 2016. Variation potential propagation decreases heatrelated damage of pea photosystem I by 2 different pathways. Plant Sign. Behav. 11, e1145334.

    Article  Google Scholar 

  25. Vodeneev V.A., Opritov V.A., Pyatygin S.S. 2006. Reversible change in intracellular pH during action potential generation in the higher plant Cucurbita pepo. Russ. J. Plant Physiol. 53, 538–545.

    Article  Google Scholar 

  26. Swarbreck S.M., Colaço R., Davies J.M. 2013. Plant calcium-permeable channels. Plant Physiol. 163, 514–522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jammes F., Hu H.-C., Villiers F., Bouten R., Kwak J.M. 2011. Calcium-permeable channels in plant cells. FEBS J. 278, 4262–4276.

    Article  CAS  PubMed  Google Scholar 

  28. Plieth C. 1999. Temperature sensing by plants: Calcium-permeable channels as primary sensors–a model. J. Membr. Biol. 172, 121–127.

    Article  CAS  PubMed  Google Scholar 

  29. Carpaneto A., Ivashikina N., Levchenko V., Krol E., Jeworutzki E., Zhu J.-K., Hedrich R. 2007. Cold transiently activates calcium-permeable channels in Arabidopsis mesophyll cells. Plant Physiol. 143, 487–494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Trebacz K., Tarnecki R., Zawadzki T. 1989. The effect of ionic channel inhibitors and factors modifying metabolism on the excitability of the liverwort Conocephalum conicum. Physiol. Plant. 75, 24–30.

    Article  CAS  Google Scholar 

  31. Krol E., Dziubinska H., Trebacz K. 2004. Low-temperature-induced transmembrane potential changes in mesophyll cells of Arabidopsis thaliana, Helianthus annuus and Vicia faba. Physiol. Plant. 120, 265–270.

    Article  CAS  PubMed  Google Scholar 

  32. Lewis B.D., Karlin-Neumann G., Davis R.W., Spalding E.P. 1997. Ca{u2+}-activated anion channels and membrane depolarizations induced by blue light and cold in Arabidopsis seedlings. Plant Physiol. 114, 1327–1334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Opritov V.A., Pyatygin S.S., Vodeneev V.A. 2002. Direct coupling of generation in the cells of the higher plant Cucurbita pepo L. with the work of electrogenic pump. Russ. J. Plant Physiol. 49, 534–542.

    Article  Google Scholar 

  34. Shimmen T., Mimura T., Kikuyama M., Tazawa M. 1994. Characean cells as a tool for studying electrophysiological characteristics of plant cell structure and function. Cell Struct. Funct. 19, 263–278.

    Article  CAS  PubMed  Google Scholar 

  35. Beilby M.J. 2007. Action potential in charophytes. Int. Rev. Cytol. 257, 43–82.

    Article  CAS  PubMed  Google Scholar 

  36. Kikuyama M., Tazawa M. 1976. Tonoplast action potential in Nitella in relation to vacuolar chloride concentration. J. Membr. Biol. 29, 95–110.

    Article  CAS  PubMed  Google Scholar 

  37. Hedrich R. 2012. Ion channels in plants. Physiol. Rev. 92, 1777–1811.

    Article  CAS  PubMed  Google Scholar 

  38. Isayenkov S., Isner J.C., Maathuis F.J.M. 2010. Vacuolar ion channels: Roles in plant nutrition and signaling. FEBS Lett. 584, 1982–1988.

    Article  CAS  PubMed  Google Scholar 

  39. Reisen D., Marty F., Leborgne-Castel N. 2005. New insights into the tonoplast architecture of plant vacuoles and vacuolar dynamics during osmotic stress. BMC Plant Biol. 5, 13.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Marty F. 1999. Plant vacuoles. Plant Cell. 11, 587–599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Stael S., Wurzinger B., Mair A., Mehlmer N., Vothknecht U.C., Teige M. 2012. Plant organellar calcium signalling: An emerging field. J. Exp. Bot. 63, 1525–1542.

    Article  CAS  PubMed  Google Scholar 

  42. Barkla B.J., Pantoja O. 1996. Physiology of ion transport across the tonoplast of higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 159–184.

    Article  CAS  PubMed  Google Scholar 

  43. Biskup B., Gradmann D., Thiel G. 1999. Calcium release from InsP3-sensitive internal stores initiates action potential in Chara. FEBS Lett. 453, 72–76.

    Article  CAS  PubMed  Google Scholar 

  44. Wacke M., Thiel G., Hütt M.-T. 2003. Ca{u2+} dynamics during membrane excitation of green alga Chara: Model simulations and experimental data. J. Membr. Biol. 191, 179–192.

    Article  CAS  PubMed  Google Scholar 

  45. Beilby M.J. 1982. C1–channels in Chara. R. Soc._London B. 299, 435–445.

    Article  CAS  Google Scholar 

  46. Mummert H., Gradmann D. 1991. Action potentials in Acetabularia: Measurement and simulation of voltagegated fluxes. J. Membr. Biol. 124, 265–273.

    Article  CAS  PubMed  Google Scholar 

  47. Gradmann D., Blatt M.R., Thiel G. 1993. Electrocoupling of ion transporters in plants. J. Membr. Biol. 136, 327–332.

    Article  CAS  PubMed  Google Scholar 

  48. Gradmann D., Johannes E., Hansen U.-P. 1997. Kinetic anaylsis of Ca{u2+}/K+ selectivity of an ion channel by single-binding-site models. J. Membr. Biol. 159, 169–178.

    Article  CAS  PubMed  Google Scholar 

  49. Gradmann D. 2001. Impact of apoplast volume on ionic relations in plant cells. J. Membr. Biol. 184, 61–69.

    Article  CAS  PubMed  Google Scholar 

  50. Sukhov V., Vodeneev V. 2009. Mathematical model of action potential in cells of vascular plants. J. Membr. Biol. 232, 59–67.

    Article  CAS  PubMed  Google Scholar 

  51. Sukhov V., Nerush V., Orlova L., Vodeneev V. 2011. Simulation of action potential propagation in plants. J. Theor. Biol. 291, 47–55.

    Article  PubMed  Google Scholar 

  52. Hodgkin A.L., Huxley A.F. 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Schroeder J.I., Fang H.H. 1991. Inward-rectifying K+ channels in guard cells provide a mechanism for lowaffinity K+ uptake. Proc. Natl. Acad. Sci. USA. 88, 11583–11587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Piñeros M., Tester M. 1996. Calcium channels in higher plant cells: Selectivity, regulation and pharmacology. J. Exp. Bot. 48, 551–577.

    Article  Google Scholar 

  55. White P.J., Davenport R.J. 2002. The voltage-independent cation channel in the plasma membrane of wheat roots is permeable to divalent cations and may be involved in cytosolic Ca{u2+} homeostasis. Plant Physiol. 130, 1386–1395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Halm D.R., Frizzell R.A. 1992. Anion permeation in an apical membrane chloride channel of a secretory epithelial cell. J. Gen. Physiol. 99, 339–366.

    Article  CAS  PubMed  Google Scholar 

  57. Nayyar H. 2003. Calcium as environmental sensor in plants. Curr. Sci. 84, 893–902.

    CAS  Google Scholar 

  58. Wacke M., Thiel G. 2001. Electrically triggered all-ornone Ca{u2+}-liberation during action potential in the giant alga Chara. J. Gen. Physiol. 118, 11–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. DeWald D.B., Torabinejad J., Jones C.A, Shope J.C., Cangelosi A.R, Thompson J.E., Prestwich G.D., Hama H. 2001. Rapid accumulation of phosphatidylinositol 4,5-bisphosphate and inositol 1,4,5-trisphosphate correlates with calcium mobilization in saltstressed Arabidopsis. Plant Physiol. 126, 759–769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hansen U.-P., Gradmann D., Sanders D., Slayman C.L. 1981. Interpretation of current–voltage relationships for “active” ion transport systems: I. Steady-state reaction-kinetic analysis of class-I mechanisms. J. Membr. Biol. 63, 165–190.

    Article  CAS  PubMed  Google Scholar 

  61. Gradmann D., Boyd C.M. 2005. Apparent charge of binding site in ion-translocating enzymes: Kinetic impact. Eur. Biophys. J. 34, 353–357.

    Article  CAS  PubMed  Google Scholar 

  62. Pfanz H., Heber U. 1986. Buffer capacities of leaves, leaf cells, and leaf cell organelles in relation to fluxes of potentially acidic gases. Plant Physiol. 81, 597–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Tuteja N. 2009. Integrated calcium signaling in plants. In: Signaling in Plants. Baluska F., Mancuso S., Eds. Berlin–Heidelberg: Springer-Verlag, pp. 29–40.

    Chapter  Google Scholar 

  64. Liu J., Whalley H.J., Knight M.R. 2015. Combining modelling and experimental approaches to explain how calcium signatures are decoded by calmodulin-binding transcription activators (CAMTAs) to produce specific gene expression responses. New Phytol. 208, 1–14.

    Article  Google Scholar 

  65. Barbier-Brygoo H., Vinauger M., Colcombet J., Ephritikhine G., Frachisse J.-M., Maurel C. 2000. Anion channels in higher plants: Functional characterization, molecular structure and physiological role. Biochim. Biophys. Acta. 1465, 199–218.

    Article  CAS  PubMed  Google Scholar 

  66. Randall S.K. 1992. Characterization of vacuolar calcium-binding proteins. Plant Physiol. 100, 859–867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Greenwald I. 1938. The dissociation of some calcium salts. J. Biol. Chem. 124, 437–452.

    CAS  Google Scholar 

  68. Colcombet J., Thomine S., Guern J., Frachisse J.-M., Barbier-Brygoo H. 2001. Nucleotides provide a voltage-sensitive gate for the rapid anion channel of Arabidopsis hypocotyl cells. J. Biol. Chem. 276, 36139–36145.

    Article  CAS  PubMed  Google Scholar 

  69. Zhang W.-H., Walker N.A., Patrick J.W., Tyerman S.D. 2004. Pulsing Clchannels in coat cells of developing bean seeds linked to hypo-osmotic turgor regulation. J. Exp. Bot. 55, 993–1001.

    Article  CAS  PubMed  Google Scholar 

  70. Berestovsky G.N., Kataev A.A. 2005. Voltage-gated calcium and Ca{u2+}-activated chloride channels and Ca2+ transients: Voltage-clamp studies of perfused and intact cells of Chara. Eur. Biophys. J. 34, 973–986.

    Article  CAS  PubMed  Google Scholar 

  71. Brüggemann L., Dietrich P., Becker D., Dreyer I., Palme K., Hedrich R. 1999. Channel-mediated highaffinity K+ uptake into guard cells from Arabidopsis. Proc. Natl. Acad. Sci. USA. 96, 3298–3302.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Hills A., Chen Z.-H., Amtmann A., Blatt M.R., Lew V.L. 2012. OnGuard, a Computational platform for quantitative kinetic modeling of guard cell physiology. Plant Physiol. 159, 1026–1042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kinoshita T., Nishimura M., Shimazakib K. 1995. Cytosolic concentration of Ca{u2+} regulates the plasma membrane H+-ATPase in guard cells of Fava bean. Plant Cell. 7, 1333–1342.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Tikhonova L.I., Pottosin I.I., Dietz K.-J., Schbnknecht G. 1997. Fast-activating cation channel in barley mesophyll vacuoles. Inhibition by calcium. Plant J. 11, 1059–1070.

    CAS  Google Scholar 

  75. Gobert A., Isayenkov S., Voelker C., Czempinski K., Maathuis F.J. M. 2007. The two-pore channel TPK1 gene encodes the vacuolar K+ conductance and plays a role in K+ homeostasis. Proc. Natl. Acad. Sci. USA. 104, 10726–10731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Alexandre J., Lassalles J.P., Kado R.T. 1990. Opening of Ca{u2+} channels in isolated red beet root vacuole membrane by inositol 1,4,5-trisphosphate. Nature. 343, 567–570.

    Article  CAS  Google Scholar 

  77. Plant P.J., Gelli A., Blumwald E. 1994. Vacuolar chloride regulation of an anion-selective tonoplast channel. J. Membr. Biol. 140, 1–12.

    Article  CAS  PubMed  Google Scholar 

  78. Hafke J.B., Hafke Y., Smith J.A.C., Lüttge U., Thiel G. 2003. Vacuolar malate uptake is mediated by an anionselective inward rectifier. Plant J. 35, 116–128.

    Article  CAS  PubMed  Google Scholar 

  79. Gambale F., Kolb H.A., Cant A.M., Hedrieh R. 1994. The voltage-dependent H+-ATPase of the sugar beet vacuole is reversible. Eur. Biophys. J. 22, 399–403.

    Article  CAS  Google Scholar 

  80. Davies J. M., Hunt I., Sanders D. 1994. Vacuolar H+-pumping ATPase variable transport coupling ratio controlled by pH. Plant Biol. 91, 8547–8551.

    CAS  Google Scholar 

  81. Askerlund P., Evans D.E. 1992. Reconstitution and characterization of a calmodulin-stimulated Ca{u2+}-pumping ATPase purified from Brassica oleracea L. Plant Physiol. 100, 1670–1681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Martinoia E., Maeshima M., Neuhaus H.E. 2007. Vacuolar transporters and their essential role in plant metabolism. J. Exp. Bot. 58, 83–102.

    Article  CAS  PubMed  Google Scholar 

  83. Etxeberria E., Pozueta-Romero J., Gonzalez P. 2012. In and out of the plant storage vacuole. Plant Sci. 190, 52–61.

    Article  CAS  PubMed  Google Scholar 

  84. Davies J.M. 1996. Vacuolar energization: Pumps, shunts and stress. J. Exp. Bot. 48, 633–641.

    Article  Google Scholar 

  85. Sherstneva O.N., Vodeneev V.A., Katicheva L.A., Surova L.M., Sukhov V.S. 2015. Involvement of the changes in intra-and extracellular pH in the development of variable potential-induced photosynthetic response in pumpkin sprouts. Biochemistry (Mosc.). 80, 776–784.

    Article  CAS  PubMed  Google Scholar 

  86. Pyatygin S.S., Opritov V.A., Khudyakov V.A. 1992. Subthreshold changes in excitable membranes of Cucurbita pepo L. stem cells during cooling-induced action-potential generation. Planta. 186, 161–165.

    Article  CAS  PubMed  Google Scholar 

  87. Opritov V.A., Lobov S.A., Pyatygin S.S., Mysyagin S.A. 2005. Analysis of possible involvement of local bioelectric responses in chilling perception by higher plants exemplified by Cucurbita pepo. Russ. J. Plant Physiol. 52 (6), 801–808.

    Article  CAS  Google Scholar 

  88. Krol E., Dziubinska H., Stolarz M., Trebacz K. 2006. Effects of ion channel inhibitors on cold and electrically induced action potentials in Dionaea muscipula. Biol. Plant. 50, 411–416.

    Article  CAS  Google Scholar 

  89. Pyatygin S.S., Opritov V.A., Polovinkin A.V., Vodeneev V.A. 1999. On the nature of action potential of the higher plants. Dokl. Akademii nauk (Rus.). 366, 404–407.

    CAS  Google Scholar 

  90. Vodeneev V.A., Sherstneva O.N., Surova L.M., Semina M.M., Katicheva L.A., Sukhov V.S. 2016. Agedependent changes of photosynthetic responses induced by electrical signals in wheat seedlings. Russ. J. Plant Physiol. 63 (6), 861–868.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Sukhov.

Additional information

Original Russian Text © E.M. Novikova, V.A. Vodeneev, V.S. Sukhov, 2017, published in Biologicheskie Membrany, 2017, Vol. 34, No. 2, pp. 109–125.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novikova, E.M., Vodeneev, V.A. & Sukhov, V.S. Mathematical model of action potential in higher plants with account for the involvement of vacuole in the electrical signal generation. Biochem. Moscow Suppl. Ser. A 11, 151–167 (2017). https://doi.org/10.1134/S1990747817010068

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747817010068

Keywords

Navigation