Skip to main content
Log in

Synaptic organization of tonic motor units in vertebrates

  • Reviews
  • Published:
Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

The features of synaptic organization of tonic motor units in vertebrates, which are widely represented in amphibians and reptiles but preserved only as muscular systems serving sensory organs in mammals, are reviewed. Based on the previous classical works, the comparative description of innervation and neurotransmitter secretion of tonic muscular systems is given. The data on synaptic organization of tonic muscles obtained in the studies that were continued after a 20-year break and published in the past few years are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhukov E.K. 1969. Ocherki po nervno-myshechnoy fiziologii (Outlines of Neuromuscular Physiology). Leningrad: Nauka.

    Google Scholar 

  2. Granit R. 1973. Osnovy regulyatsii dvizheniy (Bases of Movement Regulation). Moscow: Mir.

    Google Scholar 

  3. Romer A.S., Parson T.S. 1986. The vertebrate body. 6th Ed. Philadelphia: Saunders College Publ.

    Google Scholar 

  4. Zhukov E.K. 1961. On the evolution of physiological mechanisms of tone among vertebrates. In: Problemy evolyutsii funktsiy i inzimokhimii protsessov vozbuzhdeniya (Problems of the evolution of functions and the enzyme chemistry of excitation processes). Moscow: Izd. AN SSSR, pp. 128–139.

    Google Scholar 

  5. Nasledov G.A. 1981. Tonicheskaya myshechnaya sistema pozvonochnykh (Tonic muscular system of vertebrates). Leningrad: Nauka.

    Google Scholar 

  6. Riesser O. 1921. Über die durch Acetylcholin bewirkte Erregungskontraktur des Freschmuskels und antagonistische Beeinflussung durch Atropin, Novokain und Kurare. Arch. Exper. Patol. Pharmakol. 91, 342–365.

    Article  Google Scholar 

  7. Sommerkamp H. 1928. Das Substrat der Dauerverkurzung am Froschmuskel. Arch. Exper. Patol. Pharmakol. 128, 99–115.

    Article  CAS  Google Scholar 

  8. Riesser O. 1925. Der Muskeltonus. Hand. Norm. Pathol. Physiol. 8(1), 192–217.

    Google Scholar 

  9. Krüger P., Duspiva F., Fürlinger F. 1933. Tetanus und Tonus der Skelettmuskeln des Frosches, einehistologische, reizphysiologische und chemische Untersuchung. Pflügers Arch. 231, 750–786.

    Article  Google Scholar 

  10. Rowlerson A.M., Spurway N.C. 1988. Histochemical and immunohistochemical properties of skeletal muscle fibres from Rana and Xenopus. Histochem. J. 20, 657–673.

    Article  Google Scholar 

  11. Nguyen L.T., Stephenson G.M. 1999. An electrophoretic study of myosin heavy chain expression in skeletal muscles of the toad Bufomarinus. J. Muscle Res. Cell Motil. 20(7), 687–695.

    Article  CAS  PubMed  Google Scholar 

  12. Shall M.S., Goldberg S.J. 1992. Extraocular motor units: Type classification and motoneuron stimulation frequency-muscle unit force relationships. Brain Res. 587(2), 291–300.

    Article  CAS  PubMed  Google Scholar 

  13. Asmussen G., Kiessling A., Wohlrab F. 1971. Histochemische Charakterisierung der verschiedenen Muskelfasertypen in der auseren Augenmuskelen von Saugetleren. Acta Anat. (Basel). 79, 526–545.

    Article  Google Scholar 

  14. Vydevska-Chichova M., Mileva K., Todorova R., Dimitrova M., Radicheva N. 2005. Slow and fast fatigable frog muscle fibres: Electrophysiological and histochemical characteristics. Gen. Physiol. Biophys. 24(4), 381–396.

    CAS  PubMed  Google Scholar 

  15. Grishin S.N., Kamaliyev R.R., Teplov A.Yu., Ziganshin A.U. 2011. Differently directed action of ATP on the force of contraction of tonic and phasic skeletal muscles of the frog. Byull. Exp. Biol. Med. (Rus.). 151(3), 251–254.

    Google Scholar 

  16. Grishin S.N., Morozov O.G., Anfinogentov V.I., Kamaliyev R.R., Morozov G.A., Ziganshin A.U. 2010. Purinergic regulation of synaptic transmission of phasic and tonic muscles of vertebrates. Izv. Samarskogo nauchnogo tsentra RAN (Rus.). 12(4(3)), 710–713.

    Google Scholar 

  17. Grishin S.N., Ziganshin A.U. 2013. Modulatory role of purines in neuromuscular transmission. Biochemistry (Moscow). 7(3), 183–191.

    Google Scholar 

  18. Matyushkin D.P. 1972. Glazodvigatel’nyi apparat mlekopitayushchikh (The oculomotor system of mammals). Leningrad: Meditsina.

    Google Scholar 

  19. Lehouelleur J., Noireaud J., Schmidt H. 1983. Distribution of acetylcholine-sensitivity in frog slow muscle fibres. Pflügers Arch. 397(4), 300–305.

    Article  CAS  PubMed  Google Scholar 

  20. Huerta M., Stefani E. 1986. Calcium action potentials and calcium currents in tonic muscle fibres of the frog (Ranapipiens). J. Physiol. 372, 293–301.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Shupliakov O., Atwood H.L., Ottersen O.P., Storm-Mathisen J., Brodin L. 1995. Presynaptic glutamate levels in tonic and phasic motor axons correlate with properties of synaptic release. J. Neurosci. 15(11), 7168–7180.

    CAS  PubMed  Google Scholar 

  22. Msghina M., Millar A.G., Charlton M.P., Govind C.K., Atwood H.L. 1999. Calcium entry related to active zones and differences in transmitter release at phasic and tonic synapses. J. Neurosci. 19(19), 8419–8434.

    CAS  PubMed  Google Scholar 

  23. Volkov E.M., Nurullin L.F., Grishin S.N., Zefirov A.L. 2003. The effects of some neurotransmitters on the resting membrane potential in somatic cells of earthworm muscle wall. Byull. Exp. Biol. Med. (Rus.). 136(8), 217–219.

    Google Scholar 

  24. Millar A.G., Atwood H.L. 2004. Crustacean phasic and tonic motor neurons. Integr. Comp. Biol. 44(1), 4–13.

    Article  PubMed  Google Scholar 

  25. Volkov E.M., Sabirova A.R., Grishin S.N., Zefirov A.L. 2005. Mechanisms of the hyperpolarizing effect of GABA on the resting potential in somatic cells of the earthworm Lumbricus terrestris muscle wall. Byull. Exp. Biol. Med. (Rus.). 139(2), 219–222.

    Google Scholar 

  26. Kruger P. 1952. Tetanus und Tonus der quergéstreiften Skelettmuskeln der Wirbeltiere und des Menschen. Leipzig: Akad. Verl.

    Google Scholar 

  27. Küffler S.W., Gerard R.W. 1947. The small-nerve motor system to skeletal muscle. J. Neurophysiol. 10(6), 383–394.

    PubMed  Google Scholar 

  28. Günther P.G. 1949. Die Innervation der tetanischen und tonischen Fasern der quergestreiften Skeletmuskulatur der Wirbeltiere. Anat. Anz. 97, 175–191.

    Google Scholar 

  29. Tschiriew S. 1879. Sur les terminaisons nerveuses dans les muscles striés. Arch. de physiol. norm. et path. 6, 89–116.

    Google Scholar 

  30. Tasaki I., Mizutani K. 1944. Comparative studies on the activities of the muscle evoked by two kinds of motor nerve fibres. Jap. J. Med. Sci. Biophys. 10, 237–244.

    Google Scholar 

  31. Csillik B., Schneider I., Kalman G. 1961. On the histochemical structure of tetanic and tonic myoneural synapses. Acta Neuroveg. (Wien). 22, 212–224.

    Article  CAS  PubMed  Google Scholar 

  32. Miledi R., Orkand P. 1966. Effect of a “fast” nerve on “slow” muscle fibres in the frog. Nature. 209, 717–718.

    Article  CAS  PubMed  Google Scholar 

  33. Radzyukevich T.L. 1995. Reinnervation of the mixed muscle of the frog Ranatemporaria by a regenerating homogeneous nerve. Zh. Evolyutsionnoy biokhimii i fiziologii (Rus.). 31(4), 467–474.

    Google Scholar 

  34. Nasledov G.A. 1972. The concept of evolution of skeletal muscles of vertebrates in light of the data of modern physiology. Usp. Fiziologicheskikh nauk (Rus.). 3, 6–24.

    Google Scholar 

  35. Fatt P., Katz B. 1952. The electric activity of the motor end-plate. Proc. R. Soc. Lond. B Biol. Sci. 140(899), 183–186.

    Article  CAS  PubMed  Google Scholar 

  36. Ginetsinsky A.G., Shamarina N.M. 1942. Tonomotor phenomenon in denervated muscle. Usp. Sovremennoy biologii (Rus.). 15, 283–294.

    Google Scholar 

  37. Magazanik L.G., Fedorov V.V., Snetkov V.A. 1979. The time course of postsynaptic currents in fast and slow junctions and its alteration by cholinesterase inhibition. Progress in Brain Res. 49, 225–240.

    Article  CAS  Google Scholar 

  38. Kuffler S.W., Vaughan Williams E.M. 1953. Properties of the ‘slow’ skeletal muscles fibres of the frog. J. Physiol. 121(2), 318–340.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Shamarina N.M. 1966. Synaptic transmission in different fibers of tonic frog skeletal muscle. Fed. Proc. Transl. Suppl. 25(4), 589–594.

    CAS  PubMed  Google Scholar 

  40. Kuffler S.W., Vaughan Williams E.M. 1953. Smallnerve junction potentials. Distribution of small motor nerves to frog skeletal muscle and membrane characteristics of the fibres they innervate. J. Physiol. 121, 229–317.

    Google Scholar 

  41. Blokhina G.I., Zefirov A.L. 1982. Investigation of the mechanism of neurotransmitter quantum secretion in the synapses of tonic muscle fibers of the frog. VINITI (Rus.). 5159(84), 1–17.

    Google Scholar 

  42. Fatt P., Katz B. 1951. An analysis of end-plate potential recorder with an intracellular electrode. J. Physiol. 115, 320–369.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Burke W., Ginsborg B.L. 1956. The action of the neuromuscular transmiiter on the slow fibre membrane. J. Physiol. 132, 599–610.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Oomura Y., Tomita T. 1960. Study on properties of neuromuscular junction. In: Electrical activity of single cells. Y. Katsuki, Ed., Tokyo.

    Google Scholar 

  45. Magazanik L.G., Nasledov G.A. 1970. Desensitization to acetylcholine of frog tonic muscle fibres. Nature. 226, 370–371.

    Article  CAS  PubMed  Google Scholar 

  46. Katz B., Thesleff S. 1957. A study of the desensitization produced by acetylcholine at the motor end-plate. J. Physiol. 138, 63–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Verma V., Reese T.S. 1984. Structure and distribution of neuromuscular junctions on slow muscle fibers in the frog. Neurosci. 12(2), 647–662.

    Article  CAS  Google Scholar 

  48. Thesleff S. 1955. The mode of neuromuscular block caused by acetylcholine, nicotine, decametonium and succinilcholine. Acta Physiol. Scand. 34, 218–231.

    Article  CAS  Google Scholar 

  49. Fatt P., Katz B. 1952. Spontaneous subthreshold activity at motor nerve endings. J. Physiol. 117(1), 109–128.

    PubMed Central  CAS  PubMed  Google Scholar 

  50. Blokhina G.I., Zefirov A.L. 1984. Electrophysiological and morphological study of synaptic organization of tonic muscle fibers of the frog. Fiziologichesky Zh. SSSR (Rus.). LXX(2), 157–165.

    Google Scholar 

  51. Nikolsky E.E., Giniatullin R.A. 1979. Termination of the presynaptic effect of carbacholine by tubocurarine. Byull. Exp. Biol. Med. (Rus.). 87(2), 171–174.

    Article  Google Scholar 

  52. Arkhipova O.V., Grishin S.N., Sitdikova G.F., Zefirov A.L. 2006. The presynaptic effects of arachidonic acid and prostaglandin E2 at the frog neuromuscular junction. Neurosci. Behav. Physiol. 36(3), 307–312.

    Article  CAS  PubMed  Google Scholar 

  53. Katz B., Miledi R. 1965. The effect of calcium on acetylcholine release from motor nerve terminals. Proc. R. Soc. Lond. B. Biol. Sci. 161, 496–503.

    Article  CAS  PubMed  Google Scholar 

  54. Grishin S.N. 2014. Transmembrane calcium current: Mechanism, registration procedures, Ca2+-mediated modulators of synaptic transmission. Biochemistry (Moscow) Suppl. Series A. 8(3), 213–224.

    Article  Google Scholar 

  55. Katz B., Miledi R. 1968. The role of calcium in neuromuscular facilitation. J. Physiol. 195, 481–492.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Mukhamedyarov M.A., Grishin S.N., Zefirov A.L., Palotas A. 2006. Evidences for calcium-dependent inactivation of calcium current at the frog motor nerve terminal. Brain Res. Bull. 69, 652–655.

    Article  CAS  PubMed  Google Scholar 

  57. Mukhamedyarov M.A., Grishin S.N., Zefirov A.L., Palotas A. 2009. The mechanisms of multi-component paired-pulse facilitation of neurotransmitter release at the frog neuromuscular junction. Pflügers Arch. 458(3), 563–570.

    Article  CAS  PubMed  Google Scholar 

  58. Burnstock G. 1976. Purinergic receptors. J. Theor. Biol. 62(2), 491–503.

    Article  CAS  PubMed  Google Scholar 

  59. Ziganshin A.U., Kamaliev R.R., Grishin S.N., Ziganshina L.E., Zefirov A.L., Burnstock G. 2005. The influence of hypothermia on P2 receptor-mediated responses of frog skeletal muscle. Eur. J. Pharmacol. 21, 187–193.

    Article  Google Scholar 

  60. Ziganshin A.U., Kamaliev R.R., Grishin S.N., Ziganshin B.A., Burnstock G. 2009. Interaction of hydrocortisone with ATP and adenosine on nerve-mediated contractions of frog skeletal muscle. Eur. J. Pharmacol. 607, 54–59.

    Article  CAS  PubMed  Google Scholar 

  61. Grishin S., Shakirzyanova A., Giniatullin A., Afzalov R., Giniatullin R. 2005. Mechanisms of ATP action on motor nerve terminals at the frog neuromuscular junction Eur. J. Neurosci. 21(5), 1271–1279.

    Article  CAS  PubMed  Google Scholar 

  62. Grishin S.N., Teplov A.Yu., Pharkhutdinov A.M., Ziganshin B.A., Ziganshin A.U. 2013. Different effects of ATP on the contractility and nonquantal acetylcholine release of rat tonic and phasic muscles. Pharmacologia. 4(9), 519–524.

    CAS  Google Scholar 

  63. Grishin S.N., Kamaliev R.R., Teplov A.Y., Ziganshin A.U. 2011. Opposite effect of ATP on contraction force of tonic and phasic skeletal muscles in frogs. Bull. Exp. Biol. Med. 151(3), 280–283.

    Article  CAS  PubMed  Google Scholar 

  64. Giniatullin R.A., Grishin S.N., Samigullin D.V., Bukharaeva E.A. 2002. The effects of carbachol on the proximal and distal parts of frog motor nerve endings. Neurosci. Behav. Physiol. 32(6), 589–593.

    Article  CAS  PubMed  Google Scholar 

  65. Trujillo X., Sánchez-Pastor E., Andrade F., Huerta M. 2014. Effects of cannabinoids on tension induced by acetylcholine and choline in slow skeletal muscle fibers of the frog. J. Membr. Biol. 247(1), 57–62.

    Article  CAS  PubMed  Google Scholar 

  66. Fatt P., Katz B. 1952. Spontaneous subthreshold activity at motor nerve endings. J. Physiol. 117, 109–128.

    PubMed Central  CAS  PubMed  Google Scholar 

  67. Burke W. 1957. Spontaneous potentials in slow muscle fibres of the frog. J. Physiol. 135, 511–521.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Harper A.A., Shelton J.R., Watt P.W. 1989. The temperature dependence of the time course of growth and decay of miniature end-plate currents in carp extraocular muscle following thermal acclimation. J. Exp. Biol. 147, 237–248.

    CAS  PubMed  Google Scholar 

  69. Miledi R., Stefani E. 1970. Miniature potentials in denervated slow muscle fibers of the frog. J. Physiol. 209, 179–186.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Samosudova N.V., Frank G.M. 1962. On structural rearrangement of cross striation during contraction. Biofizika (Rus.). 7, 411–416.

    CAS  Google Scholar 

  71. Shamarina N.M. 1971. Sinapticheskaya peredacha v tonicheskikh i netonicheskikh myshtsakh (Synaptic transmission in tonic and nontonic muscles). Moscow: Nauka.

    Google Scholar 

  72. Grishin S.N., Teplov A.Y., Galkin A.V., Devyataev A.M., Zefirov A.L., Mukhamedyarov M.A., Ziganshin A.U., Burnstock G., Palotas A. 2006. Different effects of ATP on the contractile activity of mice diaphragmatic and skeletal muscles. Neurochem. Int. 49, 756–763.

    Article  CAS  PubMed  Google Scholar 

  73. Rickert W. 1930. Über die tonischen eigenschaften Muskeln. Arch. Exper. Patol. Pharmakol. 150, 221–248.

    Article  Google Scholar 

  74. Lapshina I.B., Nasledov G.A. 1978. The change in contractile properties of tonic muscle fibers after denervation. Fiziologichesky Zh. SSSR (Rus.). 64, 1129–1133.

    CAS  Google Scholar 

  75. Hoock C., Steinmetz J., Schmidt H. 1996. Caffeine-evoked contractures in single slow (tonic) muscle fibres of the frog (Rana temporaria and R. esculenta). Pflügers Arch. 432(2), 207–214.

    Article  CAS  PubMed  Google Scholar 

  76. Lee D.J., Benson T.E., Brown M.C. 2008. Diverse synaptic terminals on rat stapedius motoneurons. J. Assoc. Res. Otolaryngol. 9(3), 321–333.

    Article  PubMed Central  PubMed  Google Scholar 

  77. Mukhamedyarov M.A., Grishin S.N., Yusupova E.R., Zefirov A.L., Palotás A. 2009. Alzheimer’s β-amyloidinduced depolarization of skeletal muscle fibers: Implications for motor dysfunctions in dementia. Cellular Physiol. Biochem. 23(1-3), 109–114.

    Article  CAS  Google Scholar 

  78. Mukhamedyarov M.A., Leushina A.V., Zefirov A.L., Teplov A.Y., Grishin S.N., Palotás A. 2011. Extraneuronal toxicity of alzheimer’s β-amyloid peptide: Comparative study on vertebrate skeletal muscles. Muscle Nerve. 43(6), 872–877.

    Article  CAS  PubMed  Google Scholar 

  79. Miledi R., Parker I., Schalow G. 1981. Calcium transients in normal and denervated slow muscle fibers of the frog. J. Physiol. 318, 191–206.

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Grishin.

Additional information

Original Russian Text © S.N. Grishin, A.U. Ziganshin, 2014, published in Biologicheskie Membrany, 2014, Vol. 31, No. 6, pp. 392–400.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grishin, S.N., Ziganshin, A.U. Synaptic organization of tonic motor units in vertebrates. Biochem. Moscow Suppl. Ser. A 9, 13–20 (2015). https://doi.org/10.1134/S1990747814060014

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747814060014

Keywords

Navigation