Skip to main content
Log in

Histochemical and immunohistochemical properties of skeletal muscle fibres fromRana andXenopus

  • Papers
  • Published:
The Histochemical Journal Aims and scope Submit manuscript

Summary

Modern histochemical and immunohistochemical techniques have been used to ‘type’ skeletal muscle fibres from threeRana species andXenopus laevis.

Differing myosin properties and metabolic capacities (representing various contractile properties) define a minimum of four fibre types inRana and five inXenopus. TheRana andXenopus types are sufficiently similar so that a single nomencclature can be applied to them. This nomenclature uses an initial letter indicating the probable contractile performance (F=fast-twitch, S=slow-twitch and T=tonic), and a number indicating rank order of presumed shortening velocity.

The largest, fastest fibres-F1-have low oxidative and, at best, moderate glycolytic capacities. Commonly adjacent to them are smaller, F2 fibres with variable but at least moderate metabolic capacities. F3 fibres are rarer and have on average the highest oxidative capacity, and at least moderate glycolytic capacity. They usually occur in the reddest parts of the muscle and, inRana, only in the vicinity of tonic fibres.

Metabolically weak, classical amphibian tonic fibres (T5) occur in bothXenopus andRana, but onlyXenopus also has an S4 fibre type. This has moderate metabolic capacity and myosin properties suggesting it is probably capable of slow shortening as well as tonic ‘hold’. Immunohistochemically, S4 fibres are most similar to avian slow-twitch fibres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asmussen, G. (1970) Zur Azetylcholinempfindlichkeit des M. rectus abdominis des Frosches.Erg. Exper. Med. 3, 153–8.

    Google Scholar 

  • Asmussen, G. &Kiessling, A (1970) Die Muskelfasersorten des Frosches; Ihre Identifikation and die Gesetzmässigkeiten ihrer Anordnung in der Skelettmuskulatur.Acta biol. med. germ. 24, 871–89.

    PubMed  Google Scholar 

  • Billeter, R., Weber, H., Lutz, H., Howald, H., Eppenberger, H. M. &Jenny, E. (1980) Myosin types in human skeletal muscle fibres.Histochemistry 65, 249–59.

    PubMed  Google Scholar 

  • Brooke, M. H. &Kaiser, K. K. (1970) Muscle fibre types: how many and what kind?Arch. Neurol. 23, 369–79.

    PubMed  Google Scholar 

  • Buchthal, F. &Schmalbruch, H. (1980) Motor unit of mammalian muscle.Physiol. Rev. 60, 90–142.

    PubMed  Google Scholar 

  • Dubowitz, V. &Pearse, A. G. E. (1962) A comparative histochemical study of oxidative enzyme and phosphorylase activity in skeletal muscle.Histochemie 2, 105–17.

    Google Scholar 

  • Engel, W. K. &Irwin, R. L. (1967) A histochemical-physiological correlation of frog skeletal muscle fibres.Amer. J. Physiol. 213, 511–22.

    PubMed  Google Scholar 

  • Guth, L. &Samaha, F. J. (1969) Qualitative differences between actomyosin ATPase of slow and fast mammalian muscle.Exp. Neurol. 25, 138–52.

    PubMed  Google Scholar 

  • Hess, A. (1970) Vertebrate slow muscle fibres.Physiol. Rev. 50, 40–62.

    PubMed  Google Scholar 

  • Kiessling, A. (1964) Die acetylcholinempfindlichkeit der Muskelfasern im Tonusbundel des M. Iliofibularis des Frosches.Pflügers Archiv. 280, 189–92.

    Google Scholar 

  • Te Kronnie, G., Reggiani, C., Schiaffino, S. &Edman, K. A. P. (1986) Shortening velocity correlated with myosin isoform composition and myofibrillar ATPase activity in frog single muscle fibres.J. Mus. Res. Cell Motil. 7, 77.

    Google Scholar 

  • Van der Laarse, W. J., Diegenbach, P. C. &Hemminga, M. A. (1986) Calcium-stimulated myofibrillar ATPase activity correlates with shortening velocity of muscle fibres inXenopus laevis.Histochem. J. 18, 487–96.

    PubMed  Google Scholar 

  • Lännergren, J. (1978) The force-velocity relation of isolated twitch and slow muscle fibres ofXenopus laevis.J. Physiol. 283, 501–21.

    PubMed  Google Scholar 

  • Lännergren, J. (1979) An intermediate type of muscle fibre inXenopus laevis.Nature 279, 254–6.

    PubMed  Google Scholar 

  • Lännergren, J. &Hoh, J. F. Y. (1984) Myosin isoenzymes in single muscle fibres ofXenopus laevis; analysis of five different functional types.Proc. Roy. Soc. B 222, 401–8.

    Google Scholar 

  • Lännergren, J. &Smith, R. S. (1966) Types of muscle fibres in toad skeletal muscle.Acta physiol. Scand. 68, 263–74.

    Google Scholar 

  • Lännergren, J., Lindblom, P. &Johansson, B. (1982) Contractile properties of two varieties of twitch muscle fibres inXenopus laevis.Acta physiol. Scand. 114, 523–35.

    PubMed  Google Scholar 

  • Lojda, Z., Gossrau, R. &Schiebler, T. H. (1976)Enzymhistochemische Methoden. Berlin: Springer-Verlag.

    Google Scholar 

  • Luff, A. R. &Proske, U. (1976) Properties of motor units of the frog sartorius muscle.J. Physiol. 258, 673–85.

    PubMed  Google Scholar 

  • Luff, A. R. &Proske, U. (1979) Properties of motor units of the frog iliofibularis muscle.Amer. J. Physiol. 236, C35-C40.

    PubMed  Google Scholar 

  • Lutz, H., Ermini, M., Jenny, E., Bruggmann, S., Joris, F. &Weber, E. (1978) The size of fibre populations in rabbit skeletal muscles as revealed by indirect immunofluorescence with anti-myosin sera.Histochemistry 57, 223–35.

    PubMed  Google Scholar 

  • Mabuchi, K. &Sreter, F. A. (1980) Actomyosin ATPase II: fibre typing by histochemical ATPase reaction.Muscle Nerve 3, 233–9.

    PubMed  Google Scholar 

  • Mascarello, F., Carpenè, E., Veggetti, A., Rowlerson, A. &Jenny, E. (1982) The tensor tympani muscle of cat and dog contains IIM and slow-tonic fibres: an unusual combination of fibre types.J. Mus. Res. Cell Motil. 3, 363–74.

    Google Scholar 

  • Meijer, A. E. F. H. (1970) Histochemical method for the demonstration of myosin adenosine triphosphatase in muscle tissues.Histochemistry 22, 51–8.

    PubMed  Google Scholar 

  • Morgan, D. L. &Proske, U. (1984) Vertebrae slow muscle: its structure, pattern of innervation and mechanical properties.Physiol. Rev. 64, 103–69.

    PubMed  Google Scholar 

  • Nasledov, G. A. (1965) Correlative study of certain morphological and functional features of muscle fibres.Fed. Proc. 24, suppl. T1091-5.

    Google Scholar 

  • Ortmann, R. (1951) Versuch einer morphologisch-histochemischen Differenzierung der Muskulatur beim Frosch.Anat. Anz (Erg.-Heft)98, 65–77.

    Google Scholar 

  • Pierobon-Bormioli, S., Sartore, S., Vitadello, M. &Schiaffino, S. (1980) “Slow” myosins in vertebrate skeletal muscle. An immunofluorescence study.J. Cell Biol. 85, 672–81.

    PubMed  Google Scholar 

  • Ridge, R. M. A. P. &Thomson, A. M. (1980) Properties of motor units in a small foot muscle ofXenopus laevis.J. Physiol. 306, 17–27.

    PubMed  Google Scholar 

  • Rowlerson, A., Pope, B., Murray, J., Whalen, R. B. &Weeds, A. G. (1981) A novel myosin present in cat jaw-closing muscle.J. Mus. Res. Cell Motil. 2, 415–38.

    Google Scholar 

  • Rowlerson, A. & Spurway, N. C. (1985) How many fibre types in amphibian limb muscles? A comparison ofRana andXenopus. J. Physiol. 358, 78P.

    Google Scholar 

  • Rubinstein, N. A., Erulkar, S. D. &Schneider, G. T. (1983) Sexual dimorphism in the fibres of a ‘clasp’ muscle ofXenopus laevis.Exp. Neurol. 82, 424–31.

    PubMed  Google Scholar 

  • Smith, R. S. &Lännergren, J. (1968) Types of motor units in the skeletal muscle ofXenopus laevis.Nature 217, 281–3.

    PubMed  Google Scholar 

  • Smith, R. S. &Ovalle, W. K. (1973) Varieties of fast and slow extrafusal muscle fibres in amphibian hind-limb muscles.J. Anat. 116, 1–24.

    PubMed  Google Scholar 

  • Snow, D. H., Billeter, R., Mascarello, F., Carpene, E., Rowlerson, A. &Jenny, E. (1982) No classical type IIB fibres in dog skeletal muscle.Histochemistry 75, 53–65.

    PubMed  Google Scholar 

  • Sommerkamp, H. (1928) Das Substrat der Dauerverkurzung am Forschmuskel. (Physiologische und pharmakologische Sonderstellung bestimmter Muskelfasern).Arch. Exptl. Pathol. Pharmakol. 128, 99–115.

    Google Scholar 

  • Spamer, C. &Pette, D. (1977) Activity patterns of phosphofructokinase, glyceraldehydephosphate dehydrogenase, lactate dehydrogenase and malate dehydrogenase in micro-dissected fast and slow fibres from rabbit psoas and soleus muscle.Histochemistry 51, 201–16.

    PubMed  Google Scholar 

  • Spurway, N. C. (1982) Histochemistry of frog myofibrillar ATPases.I.R.C.S. Med. Sci. 10, 1042–3.

    Google Scholar 

  • Spurway, N. C. (1984) Quantitative histochemistry of frog skeletal muscles.J. Physiol. 346, 62P.

    Google Scholar 

  • Spurway, N. C. (1985) Positive correlation between oxidative and glycolytic capacities in frog muscle fibres.I.R.C.S. Med. Sci. 13, 78–9.

    Google Scholar 

  • Spurway, N. C. & Rowlerson, A. (1989) Quantitative analysis of histochemical and immunohistochemical reactions in skeletal muscle fibres ofRana andXenopus. Histochem J. In press.

  • Yellin, A. &Guth, L. (1970) The histochemical classification of muscle fibres.Exp. Neurol. 26, 424–32.

    PubMed  Google Scholar 

  • Zhukov, E. K. &Leushina, L. I. (1948) “Perekhodnye” myshechnye volokna.Dokol. Akad. Nauk. SSSR 62, 565–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rowlerson, A.M., Spurway, N.C. Histochemical and immunohistochemical properties of skeletal muscle fibres fromRana andXenopus . Histochem J 20, 657–673 (1988). https://doi.org/10.1007/BF01002746

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01002746

Keywords

Navigation