Skip to main content
Log in

Effect of melatonin on stress-induced opening of non-selective pore in mitochondria from brain of young and old rats

  • Articles
  • Published:
Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

Oxidative stress is the major factor affecting different organs during aging. Mitochondria are considered to be a source of endogenous oxidants, concentrations of which can be maintained at a low level by antioxidant enzymes. At present, the aging process is considered to be tightly related with mitochondrial dysfunction, one of the reasons of which might be an increased sensitivity to induction of permeability transition pore in the inner membrane of mitochondria. Currently, the role of melatonin, concentration of which is lowered with aging, is widely examined. In the present study, the effect of melatonin on characteristics of stress-induced mPTP opening in mitochondria isolated from young and old rats, treated or not treated with melatonin, has been examined. Oxidative stress was induced by 1 or 100 μM cumene hydroperoxide. It was found that chronic treatment of old rats with melatonin caused suppression of mPTP opening in mitochondria. Melatonin was found to be able to prevent the cumene hydroperoxide-induced swelling of mitochondria isolated from melatonin-treated rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Guevera R., Gianotti M., Roca P., Oliver J. 2011. Age and sex-related changes in rat brain mitochondrial function. Cell Physiol. Biochem. 27, 201–206.

    Article  Google Scholar 

  2. Long J., Gao F., Tong L., Cotman C.W., Ames B.N., Liu J. 2009. Mitochondrial decay in the brains of old rats: Ameliorating effect of α-lipoic acid and acetyl-L-carnitine. Neurochem. Res. 34 (4), 755–763.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Harman D. 1956. Aging: A theory based on free radical and radiation chemistry. J. Gerontol. 11, 298–300.

    Article  CAS  PubMed  Google Scholar 

  4. Harman D. 1972. The biological clock: The mitochondria. J. Am. Geriatr. Soc. 20, 99–117.

    Google Scholar 

  5. Miquel J., Economos A.C., Fleming J., Johnson J.E. 1980. Mitochondrial role in cell aging. Exp. Gerontol. 15 (6), 575–591.

    Article  CAS  PubMed  Google Scholar 

  6. Tian L., Cai Q., Wei H. 1998. Alterations of antioxidant enzymes and oxidative damage to macromolecules in different organs of rats during aging. Free Radic. Biol. Med. 24, 1477–1484.

    Article  CAS  PubMed  Google Scholar 

  7. Gemma C., Vila J., Bachstetter A., Bickford P.C. 2007. Oxidative stress and the aging brain: From theory to prevention. In: Brain aging: Models, methods, and mechanisms. Riddle D.R., ed. CRC Press, Boca Raton (FL). Chapter 15.

    Google Scholar 

  8. Szalai G., Krishnamurthy R., Hajnyczky G. 1999. Apoptosis driven by IP(3)-linked mitochondrial calcium signals. EMBO J. 18 (22), 6349–6361.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Halestrap A.P., McStay G.P., Clarke S.J. 2000. The permeability transition pore complex: Another view. Biochimie. 84 (2–3), 153–166.

    Google Scholar 

  10. Bernardi P. 1999. Mitochondrial transport of cations: channels, exchangers, and permeability transition. Physiol. Rev. 79 (4), 1127–1155.

    CAS  PubMed  Google Scholar 

  11. Krestinina O.V., Odinokova I.V., Baburina Yu.L., Azarashvili T.S. 2013. Age-related effect of melatonin on permeability transition pore opening in rat brain mitochondria. Biochem. (Moscow) Suppl. Series A: Membr. Cell Biol. 7 (4), 286–293.

    Article  Google Scholar 

  12. Falcon J., Besseau L., Fuentes M., Sauzet S., Magnanou E., Boeuf G. 2009. Structural and functional evolution of the pineal melatonin system in vertebrates. Ann. N. Y. Acad. Sci. 1163, 101–111.

    Article  CAS  PubMed  Google Scholar 

  13. Reiter R.J. 1994. Pineal function during aging: attenuation of the melatonin rhythm and its neurobiological consequences. Acta Neurobiol. Exp. (Wars.). 54 (Suppl), 31–39.

    PubMed  Google Scholar 

  14. Tan D.X., Manchester L.C., Hardeland R., Lopez-Burillo S., Mayo J.C., Sainz R.M., Reiter R.J. 2003. Melatonin: A hormone, a tissue factor, an autocoid, a paracoid, and an antioxidant. J. Pineal Res. 34, 75–78.

    Article  CAS  PubMed  Google Scholar 

  15. Tan D.X., Chen L.D., Poeggeler B. 1993. Melatonin: A potent, endogenous hydroxyl radical scavenger. Endocr. J. 1, 57–60.

    Google Scholar 

  16. Menendez-Pelaez A., Reiter R.J. 1993. Distribution of melatonin in mammalian tissues: The relative importance of nuclear versus cytosolic localization. J. Pineal Res. 15 (2), 59–69.

    Article  CAS  PubMed  Google Scholar 

  17. Acuna-Castroviejo D., Escames G., Leon J., Carazo A., Khaldy H. 2003 Mitochondrial regulation by melatonin and its metabolites. Adv. Exp. Med. Biol. 527, 549–557.

    CAS  PubMed  Google Scholar 

  18. Lopez A., Garcia J.A., Escames G., Venegas C., Ortiz F., Lopez L.C., Acuna-Castroviejo D. 2009. Melatonin protects the mitochondria from oxidative damage reducing oxygen consumption, membrane potential, and superoxide anion production. J. Pineal Res. 46, 188–198.

    Article  CAS  PubMed  Google Scholar 

  19. Karasek M. 2004. Melatonin, human aging, and age-related diseases. Exp. Gerontol. 39, 1723–1729.

    Article  CAS  PubMed  Google Scholar 

  20. Anisimov V.N. 2008. Molecularnie i fiziologicheskie mehanizmi stareniya (Molecular and physiological mechanisms of aging). Nauka, St. Petersburg. Vol. 2.

    Google Scholar 

  21. Acuna-Castroviejo D., Martin M., Macias M., Escames G., Leon J., Khaldy H., Reiter R.J. 2001. Melatonin, mitochondria, and cellular bioenergetics. J. Pineal Res. 30 (2), 65–74.

    Article  CAS  PubMed  Google Scholar 

  22. Barja de Q.G., Perez-Campo R., Lopez T.M. 1990. Anti-oxidant defenses and peroxidation in liver and brain of aged rats. Biochem. J. 272, 247–250.

    Google Scholar 

  23. Dogru-Abbasoglu S., Ugurnal B., Tamer-Toptani S., Akdeniz S., Aykac-Toker G., Kocak-Toker N., Uysal M. 1998. Mitochondrial lipid peroxidation and antioxidant system in aged rats. Arch. Gerontol. Geriatr. 27, 35–40.

    Article  CAS  Google Scholar 

  24. Rao G., Xia E., Richardson A. 1990. Effect of age on the expression of antioxidant enzymes in male Fischer F344 rats. Mech. Ageing Dev. 53, 49–60.

    Article  CAS  PubMed  Google Scholar 

  25. Vanella A., Villa R.F., Gorini A., Campisi A., Giuffrida-Stella A.M. 1989. Superoxide dismutase and cytochrome oxidase activities in light and heavy synaptic mitochondria from rat cerebral cortex during aging. J. Neurosci. Res. 22, 351–355.

    Article  CAS  PubMed  Google Scholar 

  26. Carrillo M.C., Kanai S., Sato Y., Kitani K. 1992. Agerelated changes in antioxidant enzyme activities are region and organ, as well as sex, selective in the rat. Mech. Ageing Dev. 65, 187–198.

    Article  CAS  PubMed  Google Scholar 

  27. Danh H.C., Benedetti M.S., Dostert P. 1983. Differential changes in superoxide dismutase activity in brain and liver of old rats and mice. J. Neurochem. 40, 1003–1007.

    Article  CAS  PubMed  Google Scholar 

  28. Öztürk G., Akbulut K.G., Güney Ş., Acuna-Castroviejo D. 2012. Age-related changes in the rat brain mitochondrial antioxidative enzyme ratios: Modulation by melatonin. Exp. Gerontol. 47 (9), 706–711.

    Article  PubMed  Google Scholar 

  29. Petrosillio G., Moro N., Paradies V., Ruggiero F.M., Paradies G. 2010. Increased susceptibility to Ca2+-induced permeability transition and to cytochrome c release in rat heart mitochondria with aging: Effect of melatonin. J. Pineal. Res. 48 (4), 340–346.

    Article  Google Scholar 

  30. Sims N.R. 1990. Rapid isolation of metabolically active mitochondria from rat brain and subregions using percoll density gradient centrifugation. J. Neurochem. 55, 698–707.

    Article  CAS  PubMed  Google Scholar 

  31. Azarashvili T.S., Grachev D.E., Krestinina O.V., Evtodienko Yu.V., Yurkov I.S., Papadopoulos V., Reizer G. 2007. The peripheral-type benzodiazepine receptor is involved in control of Ca2+-induced permeability transition pore opening in rat brain mitochondria. Cell Calcium. 42 (1), 27–39.

    Article  CAS  PubMed  Google Scholar 

  32. Slominski A., Tobin D.J., Zmijewski M.A., Wortsman J., Paus R. 2008. Melatonin in the skin: Synthesis, metabolism, and functions. Trends Endocrinol. Metab. 19, 17–24.

    Article  CAS  PubMed  Google Scholar 

  33. Bokov A., Chaudhuri A., Richardson A. 2004. The role of oxidative damage and stress in aging. Mech. Ageing Dev. 125 (10–11), 811–826.

    Article  CAS  PubMed  Google Scholar 

  34. Gonca A.K., Gonul B., Akbulut H. 1999. Differential effects of pharmacological doses of melatonin on malondialdehyde and glutathione levels in young and old rats. Gerontology. 45, 67–71.

    Article  Google Scholar 

  35. Kumar P., Taha A., Kale R.K., Cowsik S.M., Baquer N.Z. 2011. Physiological and biochemical effects of 17β-estradiol in aging female rat brain. Exp. Gerontol. 46, 597–605.

    Article  CAS  PubMed  Google Scholar 

  36. Krestinina O.V., Kruglov A.G., Grachev D.E., Baburina Yu.L., Evtodienko Yu.V., Moshkov D.A., Santalova I.M., Azarashvili T.S. 2010. Age-dependent changes of mitochondrial functions in Ca2+-induced opening of permeability transition pore. Biochem. (Moscow) Suppl. Series A: Membr. Cell Biol. 4 (2), 180–186.

    Article  Google Scholar 

  37. Mather M., Rottenberg H. 2000. Aging enhances the activation of the permeability transition pore in mitochondria. Biochem. Biophys. Res. Commun. 273, 603–608.

    Article  CAS  PubMed  Google Scholar 

  38. Petrosillo G., Casanova G., Matera M., Ruggiero F.M., Paradies G. 2006. Interaction of peroxidized cardiolipin wit rat heart mitochondrial membranes: Induction of permeability transition and cytochrome c release. FEBS Lett. 580, 6311–6316.

    Article  CAS  PubMed  Google Scholar 

  39. Pieri C. 1994. Melatonin: A peroxyl radical scavenger more effective than vitamin E. Life Sci. 15, PL271–PL276.

    Google Scholar 

  40. Martin M., Macias M., Leon J., Escames G., Khalde H., Acuna-Castroviejo D. 2002. Melatonin increases the activity of the oxidative phosphorylation enzymes and the production of ATP in rat brain and liver mitochondria. Intern. J. Biochem. 34, 348–357.

    Article  CAS  Google Scholar 

  41. Antolin I., Rodriguez C., Sainz R.M., Mayo J.C., Uria H., Kotler M.N., Rodriguez-Colunga M.J., Tolivia D., Menendez-Pelaez A. 1996. Neurohormobe melatonun prevents cell damage: Effect on gene expression for antioxidant enzymes. FASEB J. 10, 882–890.

    CAS  PubMed  Google Scholar 

  42. Eckert G.P., Schiborr C., Hagl S., Abdel-Kader R., Muller W.E., Rimbach G., Frank J. 2013. Curcumin prevents mitochondrial dysfunction in the brain of the senescence-accelerated mouse-prone 8. Neurochem. Int. 62 (5), 595–602.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Krestinina.

Additional information

Original Russian Text © O.V. Krestinina, Yu.L. Baburina, T.S. Azarashvili, 2014, published in Biologicheskie Membrany, 2014, Vol. 31, No. 2, pp. 95–103.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krestinina, O.V., Baburina, Y.L. & Azarashvili, T.S. Effect of melatonin on stress-induced opening of non-selective pore in mitochondria from brain of young and old rats. Biochem. Moscow Suppl. Ser. A 9, 116–123 (2015). https://doi.org/10.1134/S1990747814020032

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747814020032

Keywords

Navigation