Skip to main content
Log in

Influence of antioxidant SkQ1 on accumulation of mitochondrial DNA deletions in the hippocampus of senescence-accelerated OXYS rats

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Reduction of efficiency of oxidative phosphorylation associated with aging and the development of neurodegenerative diseases including Alzheimer’s disease is thought to be linked to the accumulation of deletions in mitochondrial DNA (ΔmtDNA), which are seen as a marker of oxidative damage. Recently, we have shown that mitochondria-targeted antioxidant SkQ1 (10-(6′-plastoquinonyl)decyltriphenylphosphonium) can slow the development of signs of Alzheimer’s disease in senescence-accelerated OXYS rats. The purpose of this study was to explore the relationship between the development of neurodegenerative changes in the brain of OXYS rats and changes in the amount of mtDNA and the 4834-bp mitochondrial DNA deletion (ΔmtDNA4834) as well as the effect of SkQ1. We studied the relative amount of mtDNA and ΔmtDNA4834 in the hippocampus of OXYS and Wistar (control) rats at ages of 1, 2, 6, 10, and 20 days and 3, 6, and 24 months. During the period crucial for manifestation of the signs of accelerated aging of OXYS rats (from 1.5 to 3 months of age), we evaluated the effects of administration of SkQ1 (250 nmol/kg) and vitamin E (670 mmol/kg, reference treatment) on the amount of mtDNA and ΔmtDNA4834 and on the formation of the behavioral feature of accelerated senescence in OXYS rats — passive type of behavior in the open field test. In OXYS rats, the level of ΔmtDNA4834 in the hippocampus is increased compared to the Wistar rats, especially at the stage of completion of brain development in the postnatal period. This level remains elevated not only at the stages preceding the manifestation of the signs of accelerated brain aging and the development of pathological changes linked to Alzheimer’s disease, but also during their progression. However, at age of 24 months, there were no detectable differences between the two strains. SkQ1 treatment reduced the level of ΔmtDNA4834 in the hippocampus of Wistar and OXYS rats and slowed the formation of passive behavior in OXYS rats. These results support the possible use of SkQ1 for prophylaxis of brain aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

bp:

base pairs

mtDNA:

mitochondrial DNA

ΔmtDNA:

deletion in mitochondrial DNA

ΔmtDNA4834 :

4834-bp mitochondrial DNA deletion

ROS:

reactive oxygen species

SkQ1:

antioxidant 10-(6′-plastoquinonyl)decyltriphen-ylphosphonium

References

  1. Morley, J. E., Armbrecht, H. J., Farr, S. A., and Kumar, V. B. (2012) The senescence accelerated mouse (SAMP8) as a model for oxidative stress and Alzheimer’s disease, Biochim. Biophys. Acta, 1822, 650–656.

    Article  CAS  PubMed  Google Scholar 

  2. Li, H., Liu, D., Lu, J., and Bai, Y. (2012) Physiology and pathophysiology of mitochondrial DNA, Adv. Exp. Med. Biol., 942, 39–51.

    Article  CAS  PubMed  Google Scholar 

  3. Kazachkova, N., Ramos, A., Santos, C., and Lima, M. (2013) Mitochondrial DNA damage patterns and aging: revising the evidences for humans and mice, Aging Dis., 4, 337–350.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Zhang, J., Montine, T. J., Smith, M. A., Siedlak, S. L., Gu, G., Robertson, D., and Perry, G. (2002) The mitochondrial common deletion in Parkinson’s disease and related movement disorders, Parkinson. Rel. Disord., 8, 165–170.

    Article  CAS  Google Scholar 

  5. Krishnan, K., Ratnaike, T., De Gruyter, H., Jaros, E., and Turnbull, D. (2012) Mitochondrial DNA deletions cause the biochemical defect observed in Alzheimer’s disease, Neurobiol. Aging, 33, 2210–2214.

    Article  CAS  PubMed  Google Scholar 

  6. Stefanova, N. A., Fursova, A. Zh., and Kolosova, N. G. (2010) Behavioral effects induced by mitochondria-targeted antioxidant SkQ1 in Wistar and senescence-accelerated OXYS rats, J. Alzheimers Dis., 21, 479–491.

    CAS  PubMed  Google Scholar 

  7. Stefanova, N. A., Muraleva, N. A., Skulachev, V. P., and Kolosova, N. G. (2014) Alzheimer’s disease-like pathology in senescence-accelerated OXYS rats can be partially retarded with mitochondria-targeted antioxidant SkQ1, J. Alzheimers Dis., 38, 681–694.

    CAS  PubMed  Google Scholar 

  8. Kapay, N. A., Popova, O. V., Isaev, N. K., Stelmashook, E. V., Kondratenko, R. V., Zorov, D. B., Skrebitsky, V. G., and Skulachev, V. P. (2013) Mitochondria-targeted plastoquinone antioxidant SkQ1 prevents amyloid-β-induced impairment of long-term potentiation in rat hippocampal slices, J. Alzheimers Dis., 36, 377–383.

    CAS  PubMed  Google Scholar 

  9. Kolosova, N. G., Stefanova, N. A., Korbolina, E. E., and Fursova, A. Zh. (2014) Senescence-accelerated OXYS rats: a genetic model of premature aging and age-related diseases, Adv. Gerontol., 4, 294–298.

    Article  Google Scholar 

  10. Amstislavskaya, T. G., Maslova, L. N., Gladkikh, D. V., Belousova, I. I., Stefanova, N. A., and Kolosova, N. G. (2010) Effects of the mitochondria-targeted antioxidant SkQ1 on sexually motivated behavior in male rats, Pharmacol. Biochem. Behav., 96, 211–216.

    Article  CAS  PubMed  Google Scholar 

  11. Neroev, V. V., Archipova, M. M., Bakeeva, L. E., Fursova, A. Zh., Grigorian, E. N., Grishanova, A. Yu., Iomdina, E. N., Ivashchenko, Zh. N., Katargina, L. A., Khoroshilova-Maslova, I. P., Kilina, O. V., Kolosova, N. G., Kopenkin, E. P., Korshunov, S. S., Kovaleva, N. A., Novikova, Yu. P., Philippov, P. P., Pilipenko, D. I., Robustova, O. V., Saprunova, V. B., Senin, I. I., Skulachev, M. V., Sotnikova, L. F., Stefanova, N. A., Tikhomirova, N. K., Tsapenko, I. V., Shchipanova, A. I., Zinovkin, R. A., and Skulachev, V. P. (2008) Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 4. Agerelated eye disease. SkQ1 returns vision to blind animals, Biochemistry (Moscow), 73, 1317–1328.

    Article  CAS  Google Scholar 

  12. Skulachev, V. P., Anisimov, V. N., Antonenko, Y. N., Bakeeva, L. E., Chernyak, B. V., Erichev, V. P., Filenko, O. F., Kalinina, N. I., Kapelko, V. I., Kolosova, N. G., Kopnin, B. P., Korshunova, G. A., Lichinitser, M. R., Obukhova, L. A., Pasyukova, E. G., Pisarenko, O. I., Roginsky, V. A., Ruuge, E. K., Senin, I. I., Severina, I. I., Skulachev, M. V., Spivak, I. M., Tashlitsky, V. N., Tkachuk, V. A., Vyssokikh, M. Y., Yaguzhinsky, L. S., and Zorov, D. B. (2009) An attempt to prevent senescence: a mitochondrial approach, Biochim. Biophys. Acta, 1787, 437–461.

    Article  CAS  PubMed  Google Scholar 

  13. Vays, V. B., Eldarov, C. M., Vangely, I. M., Kolosova, N. G., Bakeeva, L. E., and Skulachev, V. P. (2014) Antioxidant SkQ1 delays sarcopenia-associated damage of mitochondrial ultrastructure, Aging (Albany, NY), 6, 140–148.

    Google Scholar 

  14. Saprunova, V. B., Lelekova, M. A., Kolosova, N. G., and Bakeeva, L. E. (2012) SkQ1 slows development of age-dependent destructive processes in retina and vascular layer of eyes of Wistar and OXYS rats, Biochemistry (Moscow), 77, 648–658.

    Article  CAS  Google Scholar 

  15. Markovets, A. M., Fursova, A. Z., and Kolosova, N. G. (2011) Therapeutic action of the mitochondria-targeted antioxidant SkQ1 on retinopathy in OXYS rats linked with improvement of VEGF and PEDF gene expression, PLoS One, 6, e21682.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Kolosova, N. G., Stefanova, N. A., Muraleva, N. A., and Skulachev, V. P. (2012) The mitochondria-targeted antioxidant SkQ1 but not N-acetylcysteine reverses aging-related biomarkers in rats, Aging (Albany, NY), 4, 686–694.

    CAS  Google Scholar 

  17. Stefanova, N. A., Kozhevnikova, O. S., Vitovtov, A. O., Maksimova, K. Y., Logvinov, S. V., Rudnitskaya, E. A., Korbolina, E. E., Muraleva, N. A., and Kolosova, N. G. (2014) Senescence-accelerated OXYS rats: a model of agerelated cognitive decline with relevance to abnormalities in Alzheimer disease, Cell Cycle, 13, 898–909.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Kolosova, N. G., Shcheglova, T. V., Sergeeva, S. V., and Loskutova, L. V. (2006) Long-term antioxidant supplementation attenuates oxidative stress markers and cognitive deficits in senescent-accelerated OXYS rats, Neurobiol. Aging, 27, 1289–1297.

    Article  CAS  PubMed  Google Scholar 

  19. Meissner, C., Bruse, P., Mohamed, S. A., Schulz, A., Warnk, H., Storm, T., and Oehmichen, M. (2008) The 4977 bp deletion of mitochondrial DNA in human skeletal muscle, heart and different areas of the brain: a useful biomarker or more, Exp. Gerontol., 43, 645–652.

    Article  CAS  PubMed  Google Scholar 

  20. Gadaleta, M. N., Rainaldi, G., Lezza, A. M., Milella, F., Fracasso, F., and Cantatore, P. (1992) Mitochondrial DNA copy number and mitochondrial DNA deletion in adult and senescent rats, Mutat. Res., 275, 181–193.

    Article  CAS  PubMed  Google Scholar 

  21. DiMauro, S., Tanji, K., Bonilla, E., Pallotti, F., and Schon, E. (2002) Mitochondrial abnormalities in muscle and other aging cells: classification, causes, and effects, Muscle Nerve, 26, 597–607.

    Article  CAS  PubMed  Google Scholar 

  22. Chen, T. F., Chiu, M. J., Huang, C. T., Tang, M. C., Wang, S. J., Wang, C. C., and Huang, R. F. (2011) Changes in dietary folate intake differentially affect oxidized lipid and mitochondrial DNA damage in various brain regions of rats in the absence/presence of intracerebroventricularly injected amyloid β-peptide challenge, Br. J. Nutr., 105, 1294–1302.

    Article  CAS  PubMed  Google Scholar 

  23. Edris, W., Burgett, B., Colin, O., and Filburn, C. (1994) Detection and quantitation by competitive PCR of an ageassociated increase in a 4.8-kb deletion in rat mitochondrial DNA, Mutat. Res., 316, 69–78.

    Article  CAS  PubMed  Google Scholar 

  24. Nicklas, J., Brooks, E., Hunter, T., Single, R., and Branda, R. (2004) Development of a quantitative PCR (TaqMan) assay for relative mitochondrial DNA copy number and the common mitochondrial DNA deletion in the rat, Environ. Mol. Mutagen., 44, 313–320.

    Article  CAS  PubMed  Google Scholar 

  25. Kowald, A., and Kirkwood, T. B. (2013) Mitochondrial mutations and aging: random drift is insufficient to explain the accumulation of mitochondrial deletion mutants in short-lived animals, Aging Cell, 12, 728–731.

    Article  CAS  PubMed  Google Scholar 

  26. Kowald, A., Dawson, M., and Kirkwood, T. B. (2014) Mitochondrial mutations and ageing: can mitochondrial deletion mutants accumulate via a size based replication advantage, J. Theor. Biol., 340, 111–118.

    Article  CAS  PubMed  Google Scholar 

  27. Nadasi, E., Melegh, B., Seress, L., and Kosztolanyi, G. (2004) Mitochondrial DNA deletions in newborn brain samples, Orv. Hetil., 145, 1321–1325.

    PubMed  Google Scholar 

  28. Kim, W. R., and Sun, W. (2011) Programmed cell death during postnatal development of the rodent nervous system, Dev. Growth Differ., 53, 225–235.

    Article  PubMed  Google Scholar 

  29. Walton, N. M., Shin, R., Tajinda, K., Heusner, C. L., Kogan, J. H., Miyake, S., Chen, Q., Tamura, K., and Matsumoto, M. (2012) Adult neurogenesis transiently generates oxidative stress, PLoS One, 7, e35264.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Gerschutz, A., Heinsen, H., Grunblatt, E., Wagner, A. K., Bartl, J., Meissner, C., Fallgatter, A. J., Al-Sarraj, S., Troakes, C., Ferrer, I., Arzberger, T., Deckert, J., Riederer, P., Fischer, M., Tatschner, T., and Monoranu, C. M. (2013) Neuron-specific mitochondrial DANN deletion levels in sporadic Alzheimer’s disease, Curr. Alzheimer Res., 10, 1041–1046.

    Article  PubMed  Google Scholar 

  31. Sergeeva, S., Bagryanskaya, E., Korbolina, E., and Kolosova, N. (2006) Development of behavioral dysfunctions in accelerated-senescence OXYS rats is associated with early postnatal alterations in brain phosphate metabolism, Exp. Gerontol., 41, 141–150.

    Article  CAS  PubMed  Google Scholar 

  32. Kolosova, N. G., Shcheglova, T. V., Amstislavskaya, T. G., and Loskutova, L. V. (2003) Comparative analysis of LPO products in brain structures of Wistar and OXYS rats of different age, Bull. Exp. Biol. Med., 135, 593–596.

    Article  CAS  PubMed  Google Scholar 

  33. Shabalina, I. G., Kolosova, N. G., Grishanova, A. Yu., Solovyov, V. N., Salganik, R. I., and Solovyova, N. A. (1995) Oxidative phosphorylation activity, F0F1-ATPase, and cytochrome content in liver mitochondria of rats with inherited hyperproduction of free radicals, Biochemistry (Moscow), 60, 1563–1568.

    Google Scholar 

  34. Kolosova, N. G., Aydagulova, S. V., Nepomnyashchikh, G. I., Shabalina, I. G., and Shalbueva, N. I. (2001) Dynamics of structural-functional changes in hepatocyte mitochondria of prematurely aging OXYS rats, Bull. Eksp. Biol. Med., 132, 235–240.

    Google Scholar 

  35. Skulachev, V. P., Antonenko, Y. N., Cherepanov, D. A., Chernyak, B. V., Izyumov, D. S., Khailova, L. S., Klishin, S. S., Korshunova, G. A., Lyamzaev, K. G., Pletjushkina, O. Y., Roginsky, V. A., Rokitskaya, T. I., Severin, F. F., Severina, I. I., Simonyan, R. A., Skulachev, M. V., Sumbatyan, N. V., Sukhanova, E. I., Tashlitsky, V. N., Trendeleva, T. A., Vyssokikh, M. Y., and Zvyagilskaya, R. A. (2010) Prevention of cardiolipin oxidation and fatty acid cycling as two antioxidant mechanisms of cationic derivatives of plastoquinone (SkQs), Biochim. Biophys. Acta, 1797, 878–889.

    Article  CAS  PubMed  Google Scholar 

  36. Plotnikov, E. Y., Silachev, D. N., Jankauskas, S. S., Rokitskaya, T. I., Chupyrkina, A. A., Pevzner, I. B., Zorova, L. D., Isaev, N. K., Antonenko, Y. N., Skulachev, V. P., and Zorov, D. B. (2012) Mild uncoupling of respiration and phosphorylation as a mechanism providing nephro- and neuroprotective effects of penetrating cations of the SkQ family, Biochemistry (Moscow), 77, 1029–1037.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. Kolosova.

Additional information

Original Russian Text © P. S. Loshchenova, O. I. Sinitsyna, L. A. Fedoseeva, N. A. Stefanova, N. G. Kolosova, 2015, published in Biokhimiya, 2015, Vol. 80, No. 5, pp. 707–715.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loshchenova, P.S., Sinitsyna, O.I., Fedoseeva, L.A. et al. Influence of antioxidant SkQ1 on accumulation of mitochondrial DNA deletions in the hippocampus of senescence-accelerated OXYS rats. Biochemistry Moscow 80, 596–603 (2015). https://doi.org/10.1134/S0006297915050120

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297915050120

Key words

Navigation