Skip to main content
Log in

Physiological modulators of cyclosporin A-insensitive nonspecific permeability of the inner membrane of liver mitochondria induced by calcium ions and α,ω-hexadecanedioic acid

  • Articles
  • Published:
Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

Long-chain saturated α,ω-dioic acids can induce nonspecific permeability of the inner membrane (pore opening) of liver mitochondria loaded with Ca2+ or Sr2+ by the mechanism insensitive to cyclosporin A (CsA). In this work we found that 200 μM Ca2+ and 20 μM α,ω-hexadecanedioic acid (HDA) in the presence of 1 μM CsA induced high-amplitude swelling of liver mitochondria (pore opening) only in the presence of succinate as oxidation substrate. Under these conditions protonophore uncoupler of oxidative phosphorylation 2,4-dinitrophenol at the concentration of 75 μM, which is optimal for its uncoupling activity, inhibited mitochondrial swelling induced by Ca2+ and HDA, despite the presence of succinate in the incubation medium. Natural uncouplers of oxidative phosphorylation, oleic and linoleic acids, produced a similar effect. These data suggest that energization of organelles, which promotes Ca2+ transport into the matrix, is one of the basic requirements of pore opening in liver mitochondria induced by Ca2+ and HDA. It is shown that ATP at the physiological concentration of 2 mM inhibits HDA-induced high-amplitude swelling of mitochondria by reducing free Ca2+ concentration in the medium. ADP at the same concentration had a similar effect. This modulating effect of nucleotides apparently is attributable to their ability to chelate calcium ions. Polycation spermine, which is known as an inhibitor of the classical CsA-sensitive pore, at the physiological concentration of 1 mM inhibited CsA-insensitive swelling of liver mitochondria induced by sequential addition of Ca2+ and HDA. It is assumed that such action of spermine is due to its ability to shield the negative surface charges on the inner membrane of mitochondria. Bovine serum albumin (BSA), which is able to bind free fatty acids and thus prevent the induction of Ca2+-dependent pore, inhibited HDA-induced swelling of mitochondria. However, at the same BSA/fatty acid molar ratio inhibitory effect of BSA was much less pronounced if HDA was used as the pore inducer instead of palmitic acid. Apparently, this can be accounted by the fact that BSA binds α,ω-dioic acids weaker than their monocarboxylic analogues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Malhi H., Guicciardi M.E., Gores G.L. 2010. Hepatocyte death: A clear and present danger. Physiol. Rev. 90, 1165–1194.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Rasola A., Bernardi P. 2011. Mitochondrial permeability transition in Ca2+-dependent apoptosis and necrosis. Cell. Calcium. 50, 222–233.

    Article  CAS  PubMed  Google Scholar 

  3. Sultan A., Sokolove P. 2001. Palmitic acid opens a novel cyclosporin A-insensitive pore in the inner mitochondrial membrane. Arch. Biochem. Biophys. 386, 37–51.

    Article  CAS  PubMed  Google Scholar 

  4. Sultan A., Sokolove P. 2001. Free fatty acid effects on mitochondrial permeability: An overview. Arch. Biochem. Biophys. 386, 52–61.

    Article  CAS  PubMed  Google Scholar 

  5. Mironova G.D., Gritsenko E., Gateau-Roesch O., Levrat C., Agafonov A., Belosludtsev K., Prigent A., Muntean D., Dubois M., Ovize M. 2004. Formation of palmitic acid/Ca2+ complexes in the mitochondrial membrane: A possible role in the cyclosporin-insensitive permeability transition. J. Bioenerg. Biomembr. 36, 171–178.

    Article  CAS  PubMed  Google Scholar 

  6. Belosludtsev K.N., Belosludtseva N.V., Mironova G.D. 2005. Possible mechanism for formation and regulation of the palmitate-induced cyclosporin A-insensitive mitochondrial pore. Biokhimia. (Rus.). 70, 815–821.

    Article  CAS  Google Scholar 

  7. Belosludtsev K., Saris N.E., Andersson L.C., Belosludtseva N., Agafonov A., Sharma A., Moshkov D.A., Mironova G.D. 2006. On the mechanism of palmitic acid-induced apoptosis: The role of a pore induced by palmitic acid and Ca2+ in mitochondria. J. Bioenerg. Biomembr. 38, 113–120.

    Article  CAS  PubMed  Google Scholar 

  8. Di Paola M., Lorusso M. 2006. Interaction of free fatty acids with mitochondria: Coupling, uncoupling and permeability transition. Biochim. Biophys. Acta. 1757, 1330–1337.

    Article  PubMed  Google Scholar 

  9. Sanders R.J., Ofman R., Valianpou F., Kemp S., Wanders R.J. 2005. Evidence for two enzymatic pathways for omega-oxidation of docosanoic acid in rat liver microsomes. J. Lipid. Res. 46, 1001–1008.

    Article  CAS  PubMed  Google Scholar 

  10. Reddy J.K., Rao M.S. 2006. Lipid metabolism and liver inflammation. II. Fatty liver disease and fatty acid oxidation. Am. J. Physiol. Gastrointest. Liver Physiol. 290, G852–G858.

    Article  CAS  PubMed  Google Scholar 

  11. Wanders R.J., Komen J., Kemp S. 2011. Fatty acid omega-oxidation as a rescue pathway for fatty acid oxidation disorders in humans. FEBS J. 278, 182–194.

    Article  CAS  PubMed  Google Scholar 

  12. Tonsgard J.H. 1986. Serum dicarboxylic acids in Reye syndrome. J. Pediatr. 109, 440–445.

    Article  CAS  PubMed  Google Scholar 

  13. Dubinin M.V., Adakeeva S.I., Samartsev V.N. 2013. Long chain α,ω-dioic acids as inducers of cyclosporin A-insensitive nonspecific permeability of the inner membrane of liver mitochondria loaded with calcium or strontium ions. Biokhimia. (Rus.). 78, 412–417.

    Article  CAS  Google Scholar 

  14. Zoratti M., Szabo I. 1995. The mitochondrial permeability transition. Biochim. Biophys. Acta. 1241, 139–176.

    Article  PubMed  Google Scholar 

  15. Lapidus R.G., Sokolove P.M. 1992. Inhibition by spermine of the inner membrane permeability transition of isolated rat heart mitochondria. FEBS Lett. 313, 314–318.

    Article  CAS  PubMed  Google Scholar 

  16. Lapidus R.G., Sokolove P.M. 1994. The mitochondrial permeability transition. Interactions of spermine, ADP, and inorganic phosphate. J. Biol. Chem. 269, 18931–18936.

    CAS  PubMed  Google Scholar 

  17. Di Stefano V., Neuman W.F. 1953. Calcium complexes of adenosinetriphosphate and adenosinediphosphate and their significance in calcification in vitro. J. Biol. Chem. 200, 759–763.

    Google Scholar 

  18. Samartsev V.N. 2000. Fatty acids as uncouplers of oxidative phosphorylation. Biokhimia. (Rus.). 65, 991–1005.

    CAS  Google Scholar 

  19. Pegg A.E. 2009. Mammalian polyamine metabolism and function. IUBMB Life. 61, 880–894.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Krämer R., Mayr U., Heberger C., Tsompanidou S. 1986. Activation of the ADP/ATP carrier from mitochondria by cationic effectors. Biochim. Biophys. Acta. 855, 201–210.

    Article  PubMed  Google Scholar 

  21. Salvi M., Toninello A. 2004. Effects of polyamines on mitochondrial Ca2+ transport. Biochim. Biophys. Acta. 1661, 113–124.

    Article  CAS  PubMed  Google Scholar 

  22. Markova O.V., Bondarenko D.I., Samartsev V.N. 1999. The anion-carrier mediated uncoupling effect of dicarboxylic fatty acids in liver mitochondria depends on the position of the second carboxyl group. Biokhimia. (Rus.). 64, 565–570.

    CAS  Google Scholar 

  23. Veech R.L., Lawson J.W., Cornell N.W., Krebs H.A. 1979. Cytosolic phosphorylation potential. J. Biol. Chem. 254, 6538–6547.

    CAS  PubMed  Google Scholar 

  24. Battaglia V., Tibaldi E., Grancara S., Zonta F., Brunati A.M., Martinis P., Bragadin M., Grillo M.A., Tempera G., Agostinelli E., Toninello A. 2012. Effect of peroxides on spermine transport in rat brain and liver mitochondria. Amino Acids. 42, 741–749.

    Article  CAS  PubMed  Google Scholar 

  25. Tonsgard J.H., Meredith S.C. 1991. Characterization of the binding sites for dicarboxylic acids on bovine serum albumin. Biochem. J. 276, 569–575.

    CAS  PubMed  Google Scholar 

  26. Furuhashi M., Hotamisligil G.S. 2008. Fatty acidbinding proteins: Role in metabolic diseases and potential as drug targets. Nat. Rev. Drug Discov. 7, 489–503.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Samartsev.

Additional information

Original Russian Text © M.V. Dubinin, A.A. Vedernikov, S.I. Adakeeva, E.I. Khoroshavina, V.N. Samartsev, 2013, published in Biologicheskie Membrany, 2013, Vol. 30, No. 5–6, pp. 364–371.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dubinin, M.V., Vedernikov, A.A., Adakeeva, S.I. et al. Physiological modulators of cyclosporin A-insensitive nonspecific permeability of the inner membrane of liver mitochondria induced by calcium ions and α,ω-hexadecanedioic acid. Biochem. Moscow Suppl. Ser. A 8, 30–36 (2014). https://doi.org/10.1134/S1990747813050036

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747813050036

Keywords

Navigation