Skip to main content
Log in

Dietary supplementation of old mice with flavonoid dihydroquercetin causes recovery of the mitochondrial enzyme activities in skeletal muscles

  • Published:
Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

The effect of a potent antioxidant, flavonoid dihydroquercetin on the activity of three mitochondrial enzymes in mouse skeletal muscles has been investigated. An ability of this substance to restore the activity of mitochondrial enzymes in old animals was demonstrated. The activities of citrate synthase, NADHcoenzymeQ1-oxidoreductase (complex 1) and cytochromc-oxidase (complex 4) were assessed using spectro-photometric analysis in a quadriceps muscle homogenate. It was shown that the citrate synthase activity decreased moderately and the activities of complexes 1 and 4 in skeletal muscles dropped significantly in old mice. Supplementation of drink water with dihydroquercetin for a few weeks led to an increase of citrate synthase and complex 1 activity (P < 0.1) in muscles of old animals. Activity of complex 4 returned to the level found in the tissue of young mice. Maximal activity of citrate synthase and complex 1 was found in muscles of young mice. Sensitivity of NADH-coenzymeQ1-oxidoreductase to a specific inhibitor rotenone differed in all three groups of mice. Young and old mice exhibited about 95% and 84% of the total sensitivity, respectively, while in old mice receiving dihydroquercetin the sensitivity of complex 1 to the inhibitor increased up to 98%. The biochemical alterations entailed an increase in animals’ mobility as well as an improvement of fur and skin condition. Fatty acid composition of homogenate in muscle tissue of all three groups was also investigated. A reliable decline of the amount of linoleic acid and an increase in stearic and docosanoic acid contents as well as an increase of total amount of fatty acids in muscles of old mice were found. Statistically significant changes in fatty acid composition in muscles of old mice in the control group and in old mice receiving antioxidant were not observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Harman, D., Aging: A Theory Based on Free Radical And Radiation Chemistry, J. Gerontol., 1956, vol. 11, pp. 298–300.

    PubMed  CAS  Google Scholar 

  2. Harman, D., The Biologic Clock: The Mitochondria? J. Am. Geriatr. Soc., 1972, vol. 20, pp. 145–147.

    PubMed  CAS  Google Scholar 

  3. Beckman, K.B. and Ames, B.N., The Free Radical Theory of Aging Matures, Physiol. Rev., 1998, vol. 78, no. 2, pp. 547–581.

    PubMed  CAS  Google Scholar 

  4. Sipos, I., Tretter, L., and Adam-Vizi, V., Quantitative Relationship between Inhibition of Respiratory Complexes and Formation of Reactive Oxygen Species in Isolated Nerve Terminals, J. Neurochem., 2003, vol. 84, no. 1, pp. 112–118.

    Article  PubMed  CAS  Google Scholar 

  5. Barja, G., Rate of Generation of Oxidative Stress-Related Damage and Animal Longevity, Free Radic. Biol. Med., 2002, vol. 33, no. 9, pp. 1167–1172.

    Article  PubMed  CAS  Google Scholar 

  6. Teleskin, Yu.O., Zambalova, B.A., Babenkova, I.V., Klebanov, G.I., and Tukavkina, N.A., Antioxidant Properties of Dihydroquercetine, Biofizika (Rus.), 1996, vol. 41, no. 3, pp. 620–624.

    Google Scholar 

  7. Teleskin, Yu.O., Babenkova, I.V., Klebanov, G.I., Asaichev, A.V., and Kolkhir, V.K., Antioxidant Properties of Dihydroquercetine at the γ-Irradiation, Vopr. Biol. Med. Farm. Khim. (Rus.), 1999, no. 2, pp. 45–48.

  8. Teleskin, Yu.O., Babenkova, I.V., Kolkhir, V.K., Baginskaya, A.I., Tukavkina, N.A., Kolesnik, Yu.A., and Selivanova, I.A., Antioxidant Effect of Dihydroquercetine at the Tetrachlormethane Hepatitis, Vopr. Biol. Med. Farm. Khim. (Rus.), 1999, no. 3, pp. 47–51.

  9. Fedosova, N.F., Alisievich, S.V., Lyadov, K.V., Romanova, E.P., Rud’ko, I.A., and Kubatiev, A.A., Mechanisms of Dihydroquercetine Regulation of Neutrophil Functions at Pancreatic Diabetes, Bull. Exper. Biol. Med. (Rus.), 2004, vol. 137, no. 2, pp. 164–167.

    Article  Google Scholar 

  10. Pamplona, R., Barja, G., and Portero-Otin, M., Membrane Fatty Acid Unsaturation, Protection Against Oxidative Stress, and Maximum Life Span: A Homeoviscous-Longevity Adaptation? Ann. N.Y. Acad. Sci., 2002, vol. 959, pp. 475–490.

    Article  PubMed  CAS  Google Scholar 

  11. Williams, R.J., Spencer, J.P., and Rice-Evans, C., Flavonoids: Antioxidants or Signaling Molecules? Free Radic. Biol. Med., 2004, vol. 36, no. 7, pp. 838–849.

    Article  PubMed  CAS  Google Scholar 

  12. Tarahovsky, Y.S., Muzafarov, E., and Kim, Y.A., Rafts Making and Rafts Breaking: How Plant Flavonoids May Control Membrane Heterogenity, Mol. Cell Biochem., 2008, vol. 314, nos. 1–2, pp. 65–71.

    Article  PubMed  CAS  Google Scholar 

  13. Darley-Usmar, V.M., Rickwood, D., and Wilson, M.T., Mitochondria: A Practical Approach, London, Irl Press Limited, 1986.

    Google Scholar 

  14. Estornell, E., Fato, R., Pallotti, F., and Lenaz, G., Assay Conditions for the Mitochondrial NADH:Coenzyme Q Oxidoreductase, FEBS Lett., 1993, vol. 332, nos. 1–2, pp. 127–131.

    Article  PubMed  CAS  Google Scholar 

  15. Wiedemann, F.R., Vielhaber, S., Schroder, R., Elger, C.E., and Kunz, W.S., Evaluation of Methods for the Determination of Mitochondrial Respiratory Chain Enzyme Activities in Human Skeletal Muscle Samples, Anal. Biochem., 2000, vol. 279, no. 1, pp. 55–60.

    Article  PubMed  CAS  Google Scholar 

  16. Maklashina, E.O., Sled’, V.D., and Vinogradov, A.D., Hysteresic Properties of Complex 1 From Mitochondria of Bovine Heart: Kinetic and Thermodynamic Parameters of Slow Reversible Transition from Inactive to Active Condition, Biokhimia (Rus.), 1994, vol. 59, no. 7, pp. 946–957.

    CAS  Google Scholar 

  17. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J., Protein Measurement with the Folin Phenol Reagent, J. Biol. Chem., 1951, vol. 193, no. 1, pp. 265–275.

    PubMed  CAS  Google Scholar 

  18. Knapp, D.R., Handbook of Analytical Derivatization Reactions, New York, Wiley Intersci., 1979, pp. 166–168.

    Google Scholar 

  19. Bronnikov, G.E., Rotaru, V.K., Agar, L., Lewandowski, P.A., and Linnane, A.W., Age-Related Changes in Activities of Mitochondrial Respiratory Complexes in Skeletal Muscles of Rat and Human, Advances in Gerontology, 2000, vol. 5, p. 20.

    Google Scholar 

  20. Arroyo, A., Navarro, F., Gomez-Díaz, C., Crane, F.L., Alcaín, F.J., Navas, P., and Villalba, J.M., Interactions between Ascorbyl Free Radical and Coenzyme Q10 at the Plasma Membrane, J. Bioenerg. Biomembr., 2000, vol. 32, no. 2, pp. 199–210.

    Article  PubMed  CAS  Google Scholar 

  21. Crane, F.L., The Evolution of Coenzyme Q, Biofactors, 2008, vol. 32, nos. 1–4, pp. 5–11.

    Article  PubMed  CAS  Google Scholar 

  22. Barron, M.J., Chinnery, P.F., Howel, D., Blakely, E.L., Schaefer, A.M., Taylor, R.W., and Turnbull, D.M., Cytochrome-C-Oxidase Deficient Muscle Fibres: Substantial Variation in Their Proportions within Skeletal Muscles from Patients with Mitochondrial Myopathy, Neuromusc. Disorders., 2005, vol. 15, no. 11, pp. 768–774.

    Article  PubMed  CAS  Google Scholar 

  23. Müller-Höcker, J., Mitochondria and Ageing, Brain Pathol., 1992, vol. 2, no. 2, pp. 149–158.

    Article  PubMed  Google Scholar 

  24. Collman, J.P., Dey, A., Decreau, R.A., Yang, Y., Hosseini, A., Solomon, E.I., and Eberspacher, T.A., Interaction of Nitric Oxide with a Functional Model of Cytochrome-C-Oxidase, Proc. Natl. Acad. Sci. USA, 2008, vol. 105, no. 29, pp. 9892–9896.

    Article  PubMed  Google Scholar 

  25. Lee, I., Salomon, A.R., Ficarro, S., Mathes, I., Lottspeich, F., Grossman, L.I., and Huttemann, M., cAMP-Dependent Tyrosine Phosphorylation of Subunit I Inhibits Cytochrome-C-Oxidase Activity, J. Biol. Chem. 2005, vol. 280, no. 7, pp. 6094–6100.

    Article  PubMed  CAS  Google Scholar 

  26. Helling, S., Vogt, S., Rhiel, A., Ramzan, R., Wen, L., Marcus, K., and Kadenbach, B., Phosphorylation and Kinetics of Mammalian Cytochrome-C-Oxidase, Mol. Cell Proteomics, 2008, vol. 7, no. 9, pp. 1714–1724.

    Article  PubMed  CAS  Google Scholar 

  27. Chiarugi, P., Taddei, M.L., and Ramponi, G., Oxidation and Tyrosine Phosphorylation: Synergistic or Antago nistic Cues in Protein Tyrosine Phosphatase, Cell Mol. Life Sci., 2005, vol. 62, no. 9, pp. 931–936.

    Article  PubMed  CAS  Google Scholar 

  28. Musatov, A., Contribution of Peroxidized Cardiolipin to Inactivation of Bovine Heart Cytochrome c Oxidase, Free Radic. Biol. Med., 2006, vol. 41, no. 2, pp. 238–246.

    Article  PubMed  CAS  Google Scholar 

  29. Sparagna, G.C., Chicco, A.J., Murphy, R.C., Bristow, M.R., Johnson, C.A., Rees, M.L., Maxey, M.L., McCune, S.A., and Moore, R.L., Loss of Cardiac Tetralinoleoyl Cardiolipin in Human and Experimental Heart Failure, J. Lipid Res., 2007, vol. 48, no. 7, pp. 1559–1570.

    Article  PubMed  CAS  Google Scholar 

  30. Diaz, F., Fukui, H., Garcia, S., and Moraes, C.T., Cytochrome C Oxidase Is Required for the Assembly/Stability of Respiratory Complex I in Mouse Fibroblasts, Mol. Cell Biol., 2006, vol. 26, no. 13, pp. 4872–4881.

    Article  PubMed  CAS  Google Scholar 

  31. Nakamura, M.T., Cheon, Y., Li, Y., and Nara, T.Y., Mechanisms of Regulation of Gene Expression by Fatty Acids, Lipids, 2004, vol. 39, no. 11, pp. 1077–1083.

    Article  PubMed  CAS  Google Scholar 

  32. Spiteller, G., Lipid Peroxidation in Aging and Age-Dependent Diseases, Exp. Gerontol., 2001, vol. 36, no. 9, pp. 1425–1457.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. E. Bronnikov.

Additional information

Original Russian Text © G.E. Bronnikov, T.P. Kulagina, A.V. Aripovsky, 2009, published in Biologicheskie Membrany, 2009, Vol. 26, No. 5, pp. 387–393.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bronnikov, G.E., Kulagina, T.P. & Aripovsky, A.V. Dietary supplementation of old mice with flavonoid dihydroquercetin causes recovery of the mitochondrial enzyme activities in skeletal muscles. Biochem. Moscow Suppl. Ser. A 3, 453–458 (2009). https://doi.org/10.1134/S1990747809040138

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747809040138

Key words

Navigation