Skip to main content
Log in

Flicker in erythrocytes. II. Results of experimental studies

  • Reviews
  • Published:
Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

The phenomenon of stochastic low-frequency oscillations of erythrocyte cell membrane, termed usually the flicker of erythrocytes, is reviewed. The first part [Biol. Membrany (Rus.), 2009, vol. 26, no. 5, pp. 352–369] describes theoretical models of erythrocyte flickering and the registration techniques. In the second part presented below the main experimental results are reviewed, the problem of identification of acting mechanisms of flicker excitation is analyzed, and flicker interrelations are considered with the membrane functioning as well as with the dynamics of proteins embedded in the membrane. The possibilities and the prospects of medical diagnostics applications of flicker of erythrocytes are discussed briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kononenko, V.L., Flicker in Erythrocytes. I. Theoretical Models and Registration Techniques, Biologicheskie Membrany (Rus.), 2009, vol. 26, no. 5, pp. 352–369. [Engl. Transl.: Biochem. (Moscow), Series A, Membr. Cell Biol., 2009, vol. 3, no. 4, pp. 356–371].

    CAS  Google Scholar 

  2. Brohard, F. and Lennon, J.F., Frequency Spectrum of the Flicker Phenomenon in Erythrocytes, J. Phys. (Fr.), 1975, vol. 36, no. 11, pp. 1035–1047.

    Article  Google Scholar 

  3. Fricke, K. and Sackmann, E., Variation of Frequency Spectrum of the Erythrocyte Flickering Caused by Aging, Osmolarity, Temperature and Pathological Changes, Biochim. Biophys. Acta, 1984, vol. 803, no. 3, pp. 145–152.

    Article  PubMed  CAS  Google Scholar 

  4. Beck, A.M. and Kononenko, V.L., Frequency Spectra of Erythrocyte Membrane Flickering Measured by Laser Light Scattering, Proceedings of SPIE, 1991, vol. 1403,pt. 1, pp. 384–386.

    Article  Google Scholar 

  5. Humpert, C. and Baumann, M., Local Membrane Curvature Affects Spontaneous Membrane Fluctuation Characteristics, Mol. Membr. Biol., 2003, vol. 20, no. 2, pp. 155–162.

    Article  PubMed  CAS  Google Scholar 

  6. Kononenko, V.L. and Shimkus, J.K.. Coherent and Noncoherent Optical Probing of Dynamic Fluctuations of Erythrocyte Shape, Izvestiya Rossiiskoi Akademii Nauk. Seriya Fizicheskaya (Rus.), 1999, vol. 63, no. 6, pp. 1166–1172 [Engl. Transl.: Bull. Russ. Acad. Sci. Physics, 1999, vol. 63, no. 6, pp. 927–932].

    CAS  Google Scholar 

  7. Kononenko, V.L. and Shimkus, J.K., Spontaneous and Forced Oscillations of Cell Membrane of Normal Human Erythrocytes: Absence of Resonant Frequencies in a Range of 0.03–500 Hz, Biologicheskie Membrany (Rus.), 2000, vol. 17, no. 3, pp. 289–301 [Engl. Transl.: Membr. Cell Biol., 2000, vol. 14, no. 3, pp. 367–382].

    CAS  Google Scholar 

  8. Zilker, A., Engelhardt, H., and Sackmann, E., Dynamic Reflection Interference Contrast (RIC-) Microscopy: A New Method to Study Excitations of Cells and to Measure Membrane Bending Elastic Moduli, J. Phys. (Fr.), 1987, vol. 48, no. 12, pp. 2139–2151.

    Google Scholar 

  9. Zilker, A., Ziegler, M., and Sackmann, E., Spectral Analysis of Erythrocyte Flickering in the 0.3–4-μm−1 Regime by Microinterferometry Combined with Fast Image Processing, Phys. Rev. A, 1992, vol. 46, no. 12, pp. 7998–8001.

    Article  PubMed  CAS  Google Scholar 

  10. Peterson M.A., Strey, H., and Sackmann, E., Theoretical and Phase Contrast Microscopic Eigenmode Analysis of Erythrocyte Flicker Amplitudes, J. Phys. (Fr.) II, 1992, vol. 2, no. 5, pp. 1273–1285.

    Article  Google Scholar 

  11. Strey, H., Peterson, M., and Sackmann, E., Measurement of Erythrocyte Membrane Elasticity by Flicker Eigenmode Decomposition, Biophys. J., 1995, vol. 69, no. 2, pp. 478–488.

    Article  PubMed  CAS  Google Scholar 

  12. Bitler, A., Barbul, A., and Korenstein, R., Detection of Movement at the Erythrocyte’s Edge by Scanning Phase Contrast Microscopy, J. Microscopy, 1999, vol. 193,pt. 2, no. 2, pp. 171–178.

    Article  CAS  Google Scholar 

  13. Popescu, G., Badizadegan, K., Dasari, R.R., and Feld, M.S., Observation of Dynamic Subdomains in Red Blood Cells, J. Biomed. Opt., 2006, vol. 11, no. 4, p. 040503.

  14. Evans, J., Gratzer, W., Mohandas, N., Parker, K., and Sleep, J., Fluctuations of the Red Blood Cell Membrane: Relation to Mechanical Properties and Lack of ATP Dependence, Biophys. J., 2008, vol. 94, no. 5, pp. 4134–4144.

    Article  PubMed  CAS  Google Scholar 

  15. Fricke, K., Wirthensohn, K., Laxhuber, R., and Sackmann, E., Flicker Spectroscopy of Erythrocytes-A Sensitive Method to Study Subtle Changes of Membrane Bending Stiffness, Eur. Biophys. J., 1986, vol. 14, no. 2, pp. 67–81.

    Article  PubMed  CAS  Google Scholar 

  16. Zeman, K., Engelhard, H., and Sackmann, E., Bending Undulations and Elasticity of the Erythrocyte Membrane: Effects of Cell Shape and Membrane Organization, Europ. Biophys. J., 1990, vol. 18, no. 4, pp. 203–219.

    CAS  Google Scholar 

  17. Popescu, G., Ikeda, T., Goda, K., Best-Popescu, C.A., Laposata, M., Manley, S., Dasari, R.R., Badizadegan, K., and Feld, M.S., Optical Measurement of Cell Membrane Tension, Phys. Rev. Lett., 2006, vol. 97, no. 21, p. 218101.

    Article  PubMed  CAS  Google Scholar 

  18. Tishler, R.B. and Carlson, F.D., A Study of Dynamic Properties of the Human Red Blood Cell Membrane Using Quasi-Elastic Light-Scattering Spectroscopy, Biophys. J., 1993, vol. 65, no. 6, pp. 2586–2600.

    Article  PubMed  CAS  Google Scholar 

  19. Krol, A.Yu., Malev, V.V., and Grinfeldt, M.G., Spectral Characteristics of Spontaneous Oscillations in Erythrocytes and Their Ghosts, Biologicheskie Membrany (Rus.), 1992, vol. 9, no. 5, pp. 542–551.

    Google Scholar 

  20. Tuvia, S., Almagor, A., Bitler, A., Levin, S., Korenstein, R., and Yedgar, S., Cell Membrane Fluctuations Are Regulated by Medium Macroviscosity: Evidence for a Metabolic Driving Force, Proc. Natl. Acad. Sci. USA, 1997, vol. 94, no. 10, pp. 5045–5049.

    Article  PubMed  CAS  Google Scholar 

  21. Tuvia, S., Levin, S., and Korenstein R, Correlation between Local Cell Membrane Displacements and Filterability of Human Red Blood Cells, FEBS Lett., 1992, vol. 304, no. 1, pp. 32–36.

    Article  PubMed  CAS  Google Scholar 

  22. Tuvia, S, Levin, S, Bitler, A, and Korenstein, R., Mechanical Fluctuations of the Membrane Skeleton Are Dependent on F-Actin ATPase in Human Erythrocytes, J. Cell Biol., 1998, vol. 141, no. 7, pp. 1551–1561.

    Article  PubMed  CAS  Google Scholar 

  23. Levin, S. and Korenstei, R., Membrane Fluctuations in Erythrocytes Are Linked to MgATP-Dependent Dynamic Assembly of the Membrane Skeleton, Biophys. J., 1991, vol. 60, no. 3, pp. 733–737.

    Article  PubMed  CAS  Google Scholar 

  24. Tuvia, S., Levin, S., and Korenstein, R., Oxygenation-Deoxygenation Cycle of Erythrocytes Modulates Submicron Cell Membrane Fluctuations, Biophys. J., 1992, vol. 63, no. 2, pp. 599–602.

    Article  PubMed  CAS  Google Scholar 

  25. Zamir, N., Tuvia, S., Riven-Kreitman, R., Levin, S., and Korenstein, R., Atrial Natri-Uretic Peptide: Direct Effects on Human Red Blood Cell Dynamics, Biochem. Biophys. Res. Commun., 1992, vol. 188, no. 3, pp. 1003–1009.

    Article  PubMed  CAS  Google Scholar 

  26. Tuvia, S., Moses, A., Gulayev, N., Levin, S., and Korenstein, R., Beta-Adrenergic Agonists Regulate Cell Membrane Fluctuations of Human Erythrocytes, J. Physiol., 1999, vol. 516, pt. 3, pp. 781–792.

    Article  Google Scholar 

  27. Alster, Y., Loewenstein, A., Levin, S., Lazar, M., and Korenstein, R., Low-Frequency Submicron Fluctuations of Red Blood Cells in Diabetic Retinopathy, Arch. Ophthalmol., 1998, vol. 116, no. 10, pp. 1321–1325.

    PubMed  CAS  Google Scholar 

  28. Goldstein, M., Leibovitch, I., Levin, S., Alster, Y., Loewenstein, A., Malkin, G., and Korenstein, R., Red Blood Cell Membrane Mechanical Fluctuations in Non-Proliferative and Proliferate Diabetic Retinopathy, Graefe’s Arch. Clin. Exp. Ophthalmol., 2004, vol. 242, pp. 937–943.

    Article  Google Scholar 

  29. Kononenko, V.L., Flicker Spectroscopy of Erythrocytes: A Comparative Study of Several Theoretical Models, Proceedings of SPIE, 1994, vol. 2082, pp. 236–247.

    Article  Google Scholar 

  30. Kononenko, V.L., Interrelation between Regularity and Stochasticity in Dynamics of Individual Erythrocytes, Doctoral (Phys., Math.) Dissertation, Moscow, Emanuel Institute of Biochem. Physics, Russian Acad.Sci., 2007, p. 288.

    Google Scholar 

  31. Kononenko, V.L., Dielectro-Deformations and Flicker of Erythrocytes: Fundamental Aspects of Medical Diag nostics Applications, Proceedings of SPIE, 2002, vol. 4707, pp. 134–143.

    Article  Google Scholar 

  32. Landau, L.D. and Lifshitz, E.M., Statisticheskaya fizika, chast’ I (Statistical Physics, Part I), Moscow, Nauka, 1976.

    Google Scholar 

  33. Evans, E.A., Bending Elastic Modulus of Red Blood Cell Membrane Derived from Buckling Instability in Micropipet Aspiration Tests, Biophys. J., 1983, vol. 43, no. 7, pp. 27–30.

    Article  PubMed  CAS  Google Scholar 

  34. Linderkamp, O., Nash, G.B., Wu, P.Y.K., and Meiselman, H.J., Deformability and Intrisic Material Properties of Neonatal Red Blood Cells, Blood, 1986, vol. 67, no. 5, pp. 1244–1250.

    PubMed  CAS  Google Scholar 

  35. Waugh, R.E. and Evans, E.A., Thermoelasticity of Red Blood Cell Membrane, Biophys. J., 1979, vol. 26, no. 1, pp. 115–132.

    Article  PubMed  CAS  Google Scholar 

  36. Egginton, S., Fisher, A.C., and Nash, G.B., Comparative Studies on Thermal Sensitivity of Haemorheology: Use of Human and Fish Red Blood Cells, Clinical Hemorheology, 1992, vol. 12, pp. 677–687.

    Google Scholar 

  37. Lecklin, T., Egginton, S., and Nash, G.B., Effect of Temperature on the Resistance of Individual Red Blood Cells to Flow through Capillary-Sized Apertures, Pflügers Arch., Europ. J. Physiol., 1996, vol. 432, pp. 753–759.

    Article  CAS  Google Scholar 

  38. Kozlov, M.M. and Markin, V.S., Membrane Skeleton of Erythrocyte. A Theoretical Model, Biologicheskie Membrany (Rus.), 1986, vol. 3, no. 4, pp. 404–422.

    CAS  Google Scholar 

  39. Kononenko, V.L., Rosenberg, J.M., Shimkus, J.K, and Ataullakhanov, F.I., Temperature-Osmotic Dependence of Erythrocyte Filterability, Biologicheskie Membrany (Rus.), 2004, vol. 21, no. 2, pp. 120–132.

    CAS  Google Scholar 

  40. Lin, L. C.-L. and Brown, F.L.H., Dynamics of Pinned Membranes with Application to Protein Diffusion on the Surface of Red Blood Cells, Biophys. J., 2004, vol. 86, no. 2, pp. 764–780.

    Article  PubMed  CAS  Google Scholar 

  41. Schneider, M.B., Jenkins, J.T., and Webb, W.W., Thermal Fluctuations of Large Quasi-Spherical Bimolecular Phospholipid Vesicles, J. de Physique, 1984, vol. 49, no. 9, pp. 1457–1472.

    Article  Google Scholar 

  42. Milner, S.T. and Safran, S.A., Dynamic Fluctuations of Droplets Microemulsions and Vesicles, Phys. Rev. A, 1987, vol. 36, no. 9, pp. 4371–4379.

    Article  PubMed  CAS  Google Scholar 

  43. Kononenko, V.L. and Shimkus, J.K., Coherent Versus Noncoherent Optical Probing of Dynamic Shape Fluctuations in Red Blood Cells, Proceedings of SPIE, 1999, vol. 3732, pp. 326–335.

    Article  Google Scholar 

  44. Lisovskaya, I.L., Ataullakhanov, F.I., Tuzhilova, E.G., and Vitvitsky, V.M., Analysis of Geometrical Parameters and Mechanical Properties of Erythrocytes by Filtration through Membrane Nuclear Filters. II. Experimental Verification of the Theoretical Model, Biofizika (Rus.), 1994, vol. 39, no. 5, pp. 864–871.

    CAS  Google Scholar 

  45. Krol, A.Yu., Grinfeldt, M.G., Smilgavichus, A.D., and Levin, S.V., Fast Local Oscillations of Human Erythrocyte Surface, Tsitologiya (Rus.), 1989, vol. 31, no. 5, pp. 563–567.

    Google Scholar 

  46. Duwe, H.P., Kaes, J., and Sackmann, E., Bending Elastic Modului of Lipid Bilayers: Modulation by Solutes, J. Phys. France, 1990, vol. 51, no. 10, pp. 945–962.

    Article  CAS  Google Scholar 

  47. Smith, B.D., La Celle, P.L., Siefring, G.E., Lowe-Krentz, L., and Lorand, L. Effects of the Calcium-Mediated Enzymatic Cross-Linking of Membrane Proteins on Cellular Deformability, J. Membr. Biol., 1981, vol. 61, no. 2, pp. 75–80.

    Article  PubMed  CAS  Google Scholar 

  48. Lorand, L., Siefring, G.E., and Lowe-Krentz, L., Formation of Gamma-Glutamyl-Epsilon-Lysine Bridges between Membrane Proteins by a Ca2+-Regulated Enzyme in Intact Erythrocytes, J. Supramol. Struct., 1978, vol. 9, no. 3, pp. 427–440.

    Article  PubMed  CAS  Google Scholar 

  49. Takakuwa, Y. and Mohandas, N., Modulation of Erythrocyte Membrane Material Properties by Ca2+ and Calmodulin, J. Clin. Invest., 1988, vol. 82, no. 8, pp. 394–400.

    Article  PubMed  CAS  Google Scholar 

  50. Gardos, G., Szasz, I., and Sarkadi, B., Effect of Intracellular Calcium on the Cation Transport Processes in Human Red Cells, Acta Biol. Med. Ger., 1977, vol. 36, pp. 823–829.

    PubMed  CAS  Google Scholar 

  51. Dodson, R.A., Hinds, T.R., and Vincenzi, F.F., Effects of Calcium and A23187 on Deformability and Volume of Human Red Blood Cells, Blood Cells, 1987, vol. 12, no. 3, pp. 555–564.

    PubMed  CAS  Google Scholar 

  52. Elgsaeter, A. and Mikkelsen, A., Shapes and Shape Changes in Vitro in Normal Red Blood Cells, Biochim. Biophys. Acta, Rev. Biomembr., 1991, vol. 1071, no. 3, pp. 273–290.

    CAS  Google Scholar 

  53. Kononenko, V.L., Shimkus, J.K, and Ataullakhanov, F.I., Elastohydrodynamic Analysis of Erythrocyte Filterability. Filtration through Long Pores, Biologicheskie Membrany, 2005, vol. 22, no. 1, pp.55–67.

    CAS  Google Scholar 

  54. Sheetz, M.P. and Singer, S.J., On the Mechanism of ATPInduced Shape Changes in Human Erythrocyte Membranes. I. The Role of the Spectrin Complex Changes, J. Cell Biol., 1977, vol. 73, no. 3, pp. 638–646.

    Article  PubMed  CAS  Google Scholar 

  55. Birchmeier, W. and Singer, S.J., on the Mechanism of ATP-Induced Shape in Human Erythrocyte Membranes. II. The Role of ATP, J. Cell Biol., 1977, vol. 73, no. 3, pp. 647–659.

    Article  PubMed  CAS  Google Scholar 

  56. Manno, S., Takakuwa, Y., Nagao, K., and Mohandas, N., Modulation of Erythrocyte Membrane Mechanical Function by Beta-Spectrin Phosphorylation and Dephosphorylation, J. Biol. Chem., 1995, vol. 270, no. 10, pp. 5659–5665.

    Article  PubMed  CAS  Google Scholar 

  57. Manno, S., Takakuwa, Y., and Mohandas, N., Modulation of Erythrocyte Membrane Mechanical Function by Protein 4.1 Phosphorylation, J. Biol. Chem., 2005, vol. 280, no. 9, pp. 7581–7587.

    Article  PubMed  CAS  Google Scholar 

  58. Zhang, R. and Brown, F.L.H., Cytoskeleton Mediated Effective Elastic Properties of Model Red Blood Cell Membranes, J. Chem Phys., 2008, vol. 129, no. 6, p. 065101(14).

    Google Scholar 

  59. Peterson, M.A., Shape Fluctuations of Red Blood Cells, Molecular Crystals and Liquid Crystals, 1985, vol. 127, no. 1–4, pp. 159–186.

    Article  Google Scholar 

  60. Park, Y.K., Diez-Silva, M., Popescu, G., Lykorafitis, G., Choi, W., Feld, M.S., and Suresh, S., Refractive Index Maps and Membrane Dynamics of Human Red Blood Cells Parasitized by Plasmodium Falciparum, Proc. Natl. Acad. Sci. USA, 2008, vol. 105, no. 37, pp. 13730–13735.

    Article  PubMed  Google Scholar 

  61. Helfrich, W. and Servuss, R.-M., Undulations, Steric Interaction and Cohesion of Fluid Membranes, Il Nuovo Cimento D., 1984, vol. 3, no. 1, pp. 137–151.

    Article  Google Scholar 

  62. Evans, E., Entropy-Driven Tension in Vesicle Membranes and Unbinding of Adherent Vesicles, Langmuir, 1991, vol.7, no. 9, pp. 1900–1908.

    Article  CAS  Google Scholar 

  63. Lipowsky, R., Generic Interactions of Flexible Membranes, Handbook of Biological Physics. Structure and Dynamics of Membranes, Lipowsky, R. and Sackmann, E., Eds., Amsterdam, Elsevier, 1995, vol. 1, chapter 11, pp. 521–602.

    Google Scholar 

  64. Helfrich, W., Tension-Induced Mutual Adhesion and a Conjectured Superstructure of Lipid Membranes, Handbook of Biological Physics. Structure and Dynamics of Membranes, Lipowsky, R. and Sackmann, E., Eds., Amsterdam, Elsevier, 1995, vol. 1, chapter 14, pp. 691–721.

    Google Scholar 

  65. Lin, L.C.-L. and Brown, F.L.H., Brownian Dynamics in Fourier Space: Membrane Simulations over Long Length and Time Scales, Phys. Pev. Lett., 2004, vol. 93, no. 25, p. 256001(4).

    Google Scholar 

  66. Helfrich, W. and Weikl, T.R., Two Direct Methods to Calculate Fluctuation Forces between Rigid Objects Embedded in Fluid Membranes, European Physical J. E, 2001, vol. 5, no. 4, pp. 423–439.

    Article  CAS  Google Scholar 

  67. Sornette, D., Steric Interaction between Wandering Walls. Study of the Strong Deviation from Mean-Field Theory, Europhys. Lett., 1986, vol. 2, no. 9, pp. 715–724.

    Article  CAS  Google Scholar 

  68. Radler, J.O., Feder, T.J., Strey, H.H., and Sackmann, E., Fluctuation Analysis of Tension-Controlled Undulation Forces between Giant Vesicles and Solid Substrates, Phys. Rev. E, 1995, vol. 51, no. 5, pp. 4526–4536.

    Article  Google Scholar 

  69. Zidovska, A. and Sackmann, E., Brownian Motion of Nucleated Cell Envelopes Impedes Adhesion, Phys. Rev. Lett., 2006, vol. 96, no. 4, p. 048103(4).

    Article  CAS  Google Scholar 

  70. Tomishige, M., Sako, Y., and Kusumi, A., Regulation Mechanism of the Lateral Diffusion of Band 3 in Erythrocyte Membranes by the Membrane Skeleton, J. Cell Biol., 1998, vol. 142, no. 4, pp. 989–1000.

    Article  PubMed  CAS  Google Scholar 

  71. Weikl, T.R., Dynamic Phase Separation of Fluid Membranes with Rigid Inclusions, Phys. Rev. E, 2002, vol. 66, no. 6, p. 061915(6).

    Article  CAS  Google Scholar 

  72. Marx, S.A., Schilling, J., Sackmann, E., and Bruinsma, R., Helfrich Repulsion and Dynamical Phase Separation of Multicomponent Lipid Bilayers, Phys. Rev. Lett., 2002, vol. 88, no. 13, p. 138102(4).

    Article  CAS  Google Scholar 

  73. Chien, S., Red Cell Deformability and Its Relevance to Blood Flow, Ann. Rev. Physiol., 1987, vol. 49, pp. 177–192.

    Article  CAS  Google Scholar 

  74. Mohandas, N. and Chasis, J.A., Red Blood Cell Deformability, Membrane Material Properties and Shape: Regulation by Transmembrane, Skeletal and Cytosolic Proteins and Lipids, Seminars in Hematology, 1993, vol. 30, no. 3, pp. 171–192.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. L. Kononenko.

Additional information

Original Russian Text © V.L. Kononenko, 2009, published in Biologicheskie Membrany, 2009, Vol. 26, No. 6, pp. 451–467.

The article was translated by the author.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kononenko, V.L. Flicker in erythrocytes. II. Results of experimental studies. Biochem. Moscow Suppl. Ser. A 3, 372–387 (2009). https://doi.org/10.1134/S1990747809040035

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747809040035

Key words

Navigation