Skip to main content
Log in

Molecular dynamics investigation of nitric oxide (II) interaction with a model biological membrane

  • Published:
Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

Nitric oxide (II) diffusion through a model two-component (phosphatidylcholine and phosphatidylethanolamine molecules) biological membrane is investigated using the molecular dynamics method. It is shown that NO molecules are rotating in the process of diffusion into the phospholipid bilayer. The calculated diffusion coefficient D[NO] = 0.35 (±0.23) × 10−5 (cm2/s) is in a good agreement with literature data. This testifies that free diffusion of NO molecules may be a plausible mechanism of the NO permeation through the membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stuart-Smith K., Demystified Nitric Oxide, J., Clinical Pathophysiology: Molecular Pathophysiology, 2002, vol. 55, pp. 360–366.

    Article  CAS  Google Scholar 

  2. Von Bohlen und Halbach, O. and Dermietzel, R., Neurotransmittters and Neuromodulators, Weinheim, Wiley-VCH Verlag Gmbh, 2002.

    Google Scholar 

  3. Roman, L.J., Martasek, P., and Bettie Sue Siler Masters, Intrinsic and Extrinsic Modulation of Nitric Synthase Activity, Chem. Rev., 2002, vol. 102, pp. 1179–1189.

    Article  PubMed  CAS  Google Scholar 

  4. Chen, B., Keshive, M., and Deen, W.M., Diffusion and Reaction of Nitric Oxide in Suspension Cell Cultures, Biophys. J., 1998, vol. 75, pp. 745–754.

    Article  PubMed  CAS  Google Scholar 

  5. Liu, X., Samouilov, A., Lancaster, J.R., Jr., and Zweier, J.L., Nitric Oxide Uptake by Erythrocytes Is Primarily Limited by Extracellular Diffusion Not Membrane Resistance, J. Biol. Chem., 2002, vol. 277, pp. 26194–26199.

    Article  PubMed  CAS  Google Scholar 

  6. Subczynski, W.K. and Hyde, J.S., Spin-Label NO-Metry in Lipid Bilayer Membranes, Nitric Oxide in Transplantant Rejection and Anti-Tumor Defense, Basel, Kluwer Acad. Pub., 1998, pp. 95–108.

    Google Scholar 

  7. Subczynski, W.K., Lomnicka, M., and Hyde, J.S., Permeability of Nitric Oxide through Lipid Bilayer Membranes, Free Radicals Res., 1996, vol. 24, pp. 343–349.

    Article  CAS  Google Scholar 

  8. Subczynski, W.K. and Wisniewska, A., Physical Properties of Lipid Bilayer Membranes: Relevance to Membrane Biological Functions, Acta Biochim. Pol., 2000, vol. 47, pp. 613–625.

    PubMed  CAS  Google Scholar 

  9. Tsoukias, N.M. and Popel, A.S., Erythrocyte Consumption of Nitric Oxide in Presence and Absence of Plasma-Based Hemoglobin, Amer. J. Physiol. Heart and Circulatory Physiol., 2002, vol. 282, pp. 2265–2277.

    Google Scholar 

  10. Nagano, T. and Yoshimura, T., Bioimaging of Nitric Oxide, Chem. Rev., 2002, vol. 102, pp. 1235–1269.

    Article  PubMed  CAS  Google Scholar 

  11. Marrink, S.J. and Berendsen, H.J.C., Simulation of Water Transport through a Lipid Membrane, J. Phys. Chem., 1994, vol. 98, pp. 4155–4168.

    Article  CAS  Google Scholar 

  12. Lee, B.W., Faller, R., Sum, A.K., Vattulainen, I., Patra, M., Structural Effects of Small Molecules on Phospholipid Bilayers Investigated by Molecuar Simulations, ArXiv:physics/0407083, 2004, vol. 1.

  13. Marrink, S.J. and Berendsen, H.J.C., Permeation Process of Small Molecules across Lipid Membranes Studied by Molecular Dynamics Simulations, J. Phys. Chem., 1996, vol. 100, pp. 16729–16738.

    Article  CAS  Google Scholar 

  14. Shaitan, K.V., Antonov, M.Yu., Tourleigh, Ye.V., Levtsova, O.V., Tereshkina, K.B., Nikolaev, I.N., and Kirpichnikov, M.P., Comparative Study of Molecular Dynamics, Diffusion, and Permeability of Ligands in Biomembranes of Different Lipid Composition, Biol. Membranes (Rus.), 2008, vol. 25, no. 1, pp. 66–75.

    CAS  Google Scholar 

  15. Allen, M.P. and Tildesley, D.J., Computer Simulation of Liquids, Oxford, Clarendon Press, 1991.

    Google Scholar 

  16. Berendsen, H.J.C., van der Spoel, D., and van Drunen, R., GROMACS: a Message-Passing Parallel Molecular Dynamics Implementation, Comp. Phys. Comm., 1995, vol. 91, pp. 43–56.

    Article  CAS  Google Scholar 

  17. Lindahl, E., Hess, B., and van der Spoel, D., GROMACS 3.0: a Package for Molecular Simulation and Trajectory Analysis, J. Molec. Modelling, 2001, vol. 7, pp. 306–317.

    CAS  Google Scholar 

  18. van der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A.E., and Berendsen, H.J.C., GROMACS: Fast, Flexible and Free, J. Comp. Chem., 2005, vol. 26, pp. 1701–1718.

    Article  Google Scholar 

  19. Siek, T.J. and Newburgh, R.W., Phospholipid Composition of Chick Brain during Development, J. Lipid Res., 1995, vol. 6, pp. 552–555.

    Google Scholar 

  20. Tieleman, D.P. and Berendsen, H.J.C., Molecular Dynamics Simulations of a Fully Hydrated Dipalmitoylphosphatidylcholine Bilayer with Different Macroscopic Boundary Conditions and Parameters, J. Chem. Phys., 1996, vol. 105, pp. 4871–4880.

    Article  CAS  Google Scholar 

  21. Niemela, P., Hyvonen, M.T., and Vattulainen, I., Structure and Dynamics of Sphingomyelin Bilayer: Insight Gained through Systematic Comparison to Phosphatidylcholine, Biophys. J., 2004, vol. 87, pp. 2976–2989.

    Article  PubMed  Google Scholar 

  22. van Buuren, A.R., Marrink, S.J., and Berendsen, H.J.C., A Molecular Dynamics Study of the Decane/Water Interface, J. Phys. Chem., 1993, vol. 97, pp. 9206–9212.

    Article  Google Scholar 

  23. Dewar, M.J.S. and Thiel, W., Ground States of Molecules. 38. The MNDO Method. Approximations and Parameters, J. Amer. Chem. Soc., 1977, vol. 99, pp. 4899–4907.

    Article  CAS  Google Scholar 

  24. HYPERCHEM 7.0 User Guide. Molecular Visualization and Simulation Software Package, Geinsville, Hypercube Inc., 2002.

  25. Murzyn, K., Rog, T., Jezierski, G., Takaoka, Y., and Pasenkiewicz-Gierula, M., Effects of phospholipid unsaturation on the membrane/water interface: a molecular dynamics study, Biophys. J., 2001, vol. 81, pp. 170–183.

    Article  PubMed  CAS  Google Scholar 

  26. Caddigan, E., Cohen, J., Gullingsrud, J., and Stone, J., VMD User’s Guide, Urbana, Theoretical Biophysics Group, University of Illinois and Beckman Institute, 2003.

    Google Scholar 

  27. Darden, T., York, D., and Pedersen, L., Particle Mesh Ewald: an N*log(N) Method for Ewald Sums in Large Systems, J. Chem. Phys., 1993, vol. 98, pp. 10089–10092.

    Article  CAS  Google Scholar 

  28. Patra, M., Karttunen, M., Hyvonen, M.T., Falck, E., Lindqvist, P., and Vattulainen, I., Molecular Dynamics Simulations of Lipid Bilayers: Major Artifacts Due to Truncating Electrostatic Interactions, Biophys. J., 2003, vol. 84, pp. 3636–3645.

    Article  PubMed  CAS  Google Scholar 

  29. Ryckaert, J.-P., Ciccotti, G., and Berendsen, H.J.C., Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes, J. Comp. Phys., 1977, vol. 23, pp. 327–341.

    Article  CAS  Google Scholar 

  30. Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., DiNola, A., and Haak, J.R., Molecular Dynamics with Coupling to an External Bath, J. Chem. Phys., 1984, vol. 81, pp. 3684–3690.

    Article  CAS  Google Scholar 

  31. Chiu, S.-W., Clark, M., Balaji, V., Subramaniam, S., Scott, H.L., and Jakobsson, E., Incorporation of Surface Tension into Molecular Dynamics Simulation of an Interface: A Fluid Phase Lipid Bilayer Membrane, Biophys. J., 1995, vol. 69, pp. 1230–1245.

    Article  PubMed  CAS  Google Scholar 

  32. Feller, S.E., Zhang, Y., and Pastor, R.W., Computer Simulation of Liquid/Liquid Interfaces. II. Surface Tension-Area Dependence of a Bilayer and Monolayer, J. Chem. Phys., 1995, vol. 103, pp. 10267–10276.

    Article  CAS  Google Scholar 

  33. Tourleigh, Ye.V., Shaitan, K.V., and Balabaev, N.K., Molecular Dynamics of a Hydrated Palmitoyloleoylphosphatidylcholine Bilayers in Collisional Thermostat, Biol. Membranes (Rus.), 2005, vol. 22, pp. 491–502.

    CAS  Google Scholar 

  34. Berger, O., Edholm, O., and Jahnig, F., Molecular Dynamics Simulations of a Fluid Bilayer of Dipalmitoylphosphatidylcholine at Full Hydration, Constant Pressure, and Constant Temperature, Biophys. J., 1997, vol. 72, pp. 2002–2013.

    Article  PubMed  CAS  Google Scholar 

  35. Pfeiffer, W., Henkel, T., Sackmann, E., Knoll, W., and Richter, D., Local Dynamics of Lipid Bilayers Studied by Incoherent Quasi-Elastic Neutron Scattering, Europhys. Lett., 1989, vol. 8, pp. 201–206.

    Article  CAS  Google Scholar 

  36. Filippov, A., Oradd, G., and Lindblom, G., The Effect of Cholesterol on the Lateral Diffusion of Phospholipids in Oriented Bilayers, Biophys. J., 2003, vol. 84, pp. 3079–3086.

    Article  PubMed  CAS  Google Scholar 

  37. Pearson, R.H. and Pascher, I., The Molecular Structure of Lecithin Hydrates, Nature, 1979, vol. 281, pp. 499–501.

    Article  PubMed  CAS  Google Scholar 

  38. Nagle, J.F., Area/Lipid of Bilayers from NMR, Biophys. J., 1993, vol. 64, pp. 1476–1481.

    Article  PubMed  CAS  Google Scholar 

  39. Smaby, J.M., Momsen, M.M., Brockman, H.L., and Brown, R.E., Phosphatidylcholine Acyl Unsaturation Modulates the Decrease in Interfacial Elasticity Induced by Cholesterol, Biophys. J., 1997, vol. 73, pp. 1492–1505.

    Article  PubMed  CAS  Google Scholar 

  40. Wise, D.L. and Houghton, G., Diffusion Coefficients of Neon, Krypton, Xenon, Carbon Monoxide and Nitric Oxide in Water at 10–60°C, Chem. Eng. Sci., 1968, vol. 23, pp. 1211–1216.

    Article  CAS  Google Scholar 

  41. Denicola, A., Batthyany, C., Lissi, E., Freeman, B.A., Rubbo, H., and Radi, R., Diffusion of Nitric Oxide into Low Density Lipoprotein, J. Biol. Chem., 2002, vol. 277, pp. 932–936.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Stefanov.

Additional information

Original Russian Text © A.A. Mamonov, V.E. Stefanov, B.F. Shchegolev, 2009, published in Biologicheskie Membrany, 2009, Vol. 26, No. 3, pp. 224–233.

The article is translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mamonov, A.A., Stefanov, V.E. & Shchegolev, B.F. Molecular dynamics investigation of nitric oxide (II) interaction with a model biological membrane. Biochem. Moscow Suppl. Ser. A 3, 231–238 (2009). https://doi.org/10.1134/S1990747809020172

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747809020172

Key words

Navigation