Skip to main content
Log in

Relation of potassium uptake to proton transport and activity of hydrogenases in Escherichia coli grown at low pH

  • Published:
Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

Escherichia coli grown under anaerobic conditions in acidic medium (pH 5.5) upon hyperosmotic stress accumulates potassium ions mainly through the Kup system, the functioning of which is associated with proton efflux decrease. It was shown that H+ secretion but not glucose-induced K+ uptake was inhibited by N,N′-dicyclohexylcarbodiimide (DCC). The inhibitory effect of DCC on the H+ efflux was stronger in the trkA mutant with defective potassium transport. The K+ and H+ fluxes depended on the extent of hyperosmotic stress in the absence or presence of DCC. The decrease in external oxidation/reduction potential and H2 liberation insensitive to DCC were recorded. It was found that the atpD mutant with nonfunctional F0F1-ATPase produced a substantial amount of H2, while in the hyc mutant (but not the hyf mutant defective in hydrogenases 3 (Hyd-3) and 4 (Hyd-4)) the H2 production was significantly suppressed. At the same time, the rate of K+ uptake was markedly lower in hyfR and hyfB-R but not in hycE or hyfA-B mutants; H+ transport was lowered and sensitive to DCC in hyf but not in hyc mutants. The results point to the relationship of K+ uptake with the Hyd-4 activity. Novel options of the expression of some hyf genes in E. coli grown at pH 5.5 are proposed. It is possible that the hyfB-R genes expressed under acidic conditions or their gene products interact with the gene coding for the Kup protein or directly with the Kup system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Russell, J.B. and Diez-Gonsalez, F., The Effect of Fermentation Acids on Bacterial Growth, Adv. Microb. Physiol., 1998, vol. 39, pp. 205–234.

    Article  PubMed  CAS  Google Scholar 

  2. Ten Brink, B. and Konings, W.N., Generation of an Electrochemical Proton Gradient by Lactate Efflux in Membrane Vesicles of Escherichia coli, Eur. J. Biochem., 1980, vol. 111, pp. 59–66.

    Article  PubMed  CAS  Google Scholar 

  3. Trchounian, A., Escherichia coli Proton-Translocating F0F1-ATP Synthase and Its Association with Solute Secondary Transporters and/or Enzymes of Anaerobic Oxidation-Reduction under Fermentation, Biochem. Biophys. Res. Commun., 2004, vol. 315, pp. 1051–1057.

    Article  PubMed  CAS  Google Scholar 

  4. Senior, A.E., The Proton-Translocating ATPase of Escherichia coli, Annu. Rev. Biophys. Biophys. Chem., 1990, vol. 19, pp. 7–41.

    Article  PubMed  CAS  Google Scholar 

  5. Deckers-Hebestreit, A., Greie, J., Stalz, W., and Altendorf, K., The ATP Synthase of Escherichia coli: Structure and Function of F(0) Subunits, Biochim. Biophys. Acta., 2000, vol. 1458, pp. 364–373.

    Article  PubMed  CAS  Google Scholar 

  6. Epstein, W., Buurman, E., McLaggan, D., and Naprstek, J., Multiple Mechanisms, Roles and Controls of K+ Transport in Escherichia coli, Biochem. Soc. Transact., 1993, vol. 21, pp. 1006–1010.

    CAS  Google Scholar 

  7. Trchounian, A., Transport of Potassium Ions in Bacteria: Whether There Is a Proton-Potassium Pump Formed by the H+ and K+ Transport Systems or a Dual Character of the System Functioning, Uspekhi Sovremennoy Biologii (Rus.), 1997, vol. 117, pp. 668–689.

    Google Scholar 

  8. Epstein, W., The Roles and Regulation of Potassium in Bacteria, Prog. Nucleic Acid Res. Mol. Biol., 2003, vol. 75, pp. 293–320.

    Article  PubMed  CAS  Google Scholar 

  9. Bagramyan, K. and Trchounian, A., Peculiarities of the Structure and Function of Formiate Hydrogen Lyase, the Enzyme of Mixed Fermentation in Escherichia coli, Biokhimiya (Rus.), 2003, vol. 68, pp. 1145–1158.

    Google Scholar 

  10. Sawers, G.R., The Hydrogenases and Formate Dehydrogenases of Escherichia coli, Antonie van Leewenhoek. Int. J. Gen. Mol. Microbiol., 1994, vol. 66, pp. 57–88.

    Article  CAS  Google Scholar 

  11. Sauter, M., Bohm, R., and Bock, A., Mutational Analysis of the Operon (hyc) Determining Hydrogenase 3 Formation in Escherichia coli, Mol. Microbiol., 1992, vol. 6, pp. 1523–1532.

    Article  PubMed  CAS  Google Scholar 

  12. Andrews, S.C., Berks, B.C., McClay, J., Ambler, A., Quail, A.M., Golby, P., and Guest, R.A., 12-Cistron Escherichia coli Operon (hyf) Encoding a Putative Proton-Translocating Formate Hydrogenlyase System, Microbiology, 1997, vol. 143, pp. 3633–3647.

    Article  PubMed  CAS  Google Scholar 

  13. Trchounian, A. and Kobayashi, H., Kup Is The Major K+ Uptake System in Escherichia coli upon Hyper-Osmotic Stress at a Low pH, FEBS Lett., 1999, vol. 447, pp. 144–148.

    Article  PubMed  CAS  Google Scholar 

  14. Schleyer, M. and Bakker, E., Nucleotide Sequence and 3′-End Deletion Studies Indicate that K+ Uptake Protein Kup from Escherichia coli Is Composed of a Hydrophobic Core Linked to a Large and Partially Essential Hydrophilic C Terminus, J. Bacteriol., 1993, vol. 175, pp. 6925–6931.

    PubMed  CAS  Google Scholar 

  15. Dosch, D.C., Helmer, G.L., Sutton S.H., Salvacion F.F., and Epstein, W., Genetic Analysis of Potassium Transport Loci in Escherichia coli: Evidence for Three Constitutive Systems Mediating Uptake of Potassium, J. Bacteriol., 1991, vol. 173, pp. 687–696.

    PubMed  CAS  Google Scholar 

  16. Rhoads, D.B. and Epstein, W., Energy Coupling to Net K+ Transport in E. coli K12, J. Biol. Chem., 1977, vol. 252, pp. 1394–1401.

    PubMed  CAS  Google Scholar 

  17. Zakharyan, E. and Trchounian, A., K+ Influx by Kup in Escherichia coli Is Accompanied by a Decrease in H+ Efflux, FEMS Microbiol. Lett., 2001, vol. 204, pp. 61–64.

    Article  PubMed  CAS  Google Scholar 

  18. Nelson, R., Chibovsky, R., and Gutnick, D.L., ATP-Pi Exchange Preparation from Escherichia coli, Meth. Enzymol., 1979, vol. 55, pp. 358–363.

    Article  PubMed  CAS  Google Scholar 

  19. Riondet, C., Cachon, R., Wache, Y., Alcaraz, G., and Divies, C., Extracellular Oxidation-Reduction Potential Modifies Carbon and Electron Flow in Escherichia coli, J. Bacteriol., 2000, vol. 281, pp. 620–626.

    Article  Google Scholar 

  20. Kirakosyan, G., Bagramyan, K., and Trchounian, A., The Effect of Reducer of Thiol Groups on the Oxidation/Reduction Potential and Growth of Bacterium Escherichia coli under Anaerobic Conditions at Different pH Values of the Medium, Biofizika (Rus.), 2005, vol. 50, pp. 1095–1099.

    CAS  Google Scholar 

  21. Riondet, C., Cachon, R., Wache, Y., Alcaraz, G., and Divies, C., Changes in the Proton-Motive Force in Escherichia coli in Response to External Oxidoreduction Potential, Eur. J. Biochem., 1999, vol. 262, pp. 595–599.

    Article  PubMed  CAS  Google Scholar 

  22. Akopyan, K. and Trchounian, A., Escherichia coli Membrane Proton Conductance and Proton Fluxes Depends on Growth pH and Are Sensitive to Osmotic Shock, Cell Biochem. Biophys., 2006, vol. 46, pp. 201–206.

    Article  PubMed  CAS  Google Scholar 

  23. Visser, R.G.E., Hellingwerf, K.J., and Konings, W.N., The Protein Composition of the Cytoplasmic Membrane of Aerobically and Anaerobically Grown Escherichia coli, J. Bioenerg. Biomembr., 1984, vol. 16, pp. 295–307.

    Article  PubMed  CAS  Google Scholar 

  24. Yohannes, E., Barnhart, D.M., and Slonczewski, J.L., pH-Dependent Catabolic Protein Expression during Anaerobic Growth of Escherichia coli K-12, J. Bacteriol., 2004, vol. 186, pp. 192–199.

    Article  PubMed  CAS  Google Scholar 

  25. Iwaarden, P.R., Driessen, A.J.M., and Konings, W.N., What We Can Learn from the Effects of Thiol Reagents on Transport Proteins, Biochim. Biophys. Acta, 1992, vol. 1113, pp. 161–170.

    PubMed  Google Scholar 

  26. Mnatsakanyan, N., Zakharyan, E., Bagramyan, K., and Trchounian, A., Dithiol-Disulfide Interchanges in Membrane Transport Proteins in Escherichia coli, Biologicheskie Membrany (Rus.), 2002, vol. 19, pp. 183–192.

    CAS  Google Scholar 

  27. Mnatsakanyan, N., Bagramyan, K., and Trchounian, A., Hydrogenase 3 but Not Hydrogenase 4 Is Major in Hydrogen Gas Production by Escherichia coli Formate Hydrogenlyase at Acidic pH and in the Presence of External Formate, Cell Biochem. Biophys., 2004, vol. 41, pp. 357–366.

    Article  PubMed  CAS  Google Scholar 

  28. Bagramyan, K., Electrochemical Study of Proton-Translocating Function of Hydrogenase 3, Biofizika (Rus.), 2002, vol. 47, pp. 847–851.

    CAS  Google Scholar 

  29. Maeda, T., Sanchez-Torres, V., and Wood, T.K., Escherichia coli Hydrogenase 3 Is a Reversible Enzyme Possessing Hydrogen Uptake and Synthesis Activities, Appl. Microbiol. Biotechnol., 2007, vol. 76, pp. 1035–1042.

    Article  PubMed  CAS  Google Scholar 

  30. Bagramyan, K., Mnatsakanyan, N., Poladian, A., Vassilian, A., and Trchounian, A., The Roles of Hydrogenases 3 and 4, and the F0F1-ATPase in H2 Production by Escherichia coli at Alkaline and Acidic pH, FEBS Lett., 2002, vol. 516, pp. 172–178.

    Article  PubMed  CAS  Google Scholar 

  31. Bagramyan, K., Vassilian, A., Mnatsakanyan, N., and Trchounian, A., Involvement of Hydrogenase 4 Encoded by the hyf Operon in Molecular Hydrogen Production and Proton-Potassium Exchange in Escherichia coli, Biologicheskie Membrany (Rus.), 2000, vol. 17, pp. 604–615.

    CAS  Google Scholar 

  32. Trchounian, A., Ogandjanian, E., and Vanian, P., Osmosensitivity of the 2H+-K+-Exchange and the H+-ATPase Complex F0F1 in Anaerobically Grown Escherichia coli, Curr. Microbiol., 1994, vol. 29, pp. 187–191.

    Article  CAS  Google Scholar 

  33. Futatsugi, L., Saito, H., Kakegawa, T., and Kobayashi, H., Growth of an Escherichia coli Mutant Deficient in Respiration, FEMS Microbiol. Lett., 1997, vol. 156, pp. 141–145.

    PubMed  CAS  Google Scholar 

  34. Self, W.T., Hasona, A., and Shanmugam, K.T., Expression and Regulation of a Silent Operon, Hyf, Coding for Hydrogenase 4 Isoenzyme in Escherichia coli, J. Bacteriol., 2004, vol. 186, pp. 580–587.

    Article  PubMed  CAS  Google Scholar 

  35. Trchounian, A. and Kobayashi, H., Fermenting Escherichia coli Is Able to Grow at High Osmolarity, but Is Sensitive to the Presence of Sodium Ion, Curr. Microbiol., 1999, vol. 39, pp. 109–114.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Trchounian.

Additional information

Original Russian Text © K. Trchounian, A. Poladyan, A. Trchounian, 2009, published in Biologicheskie Membrany, 2009, Vol. 26, No. 2, pp. 111–118.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trchounian, K., Poladyan, A. & Trchounian, A. Relation of potassium uptake to proton transport and activity of hydrogenases in Escherichia coli grown at low pH. Biochem. Moscow Suppl. Ser. A 3, 144–150 (2009). https://doi.org/10.1134/S1990747809020068

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747809020068

Key words

Navigation