Skip to main content
Log in

How erythrocyte volume is regulated, or what mathematical models can and cannot do for biology

  • Published:
Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

Modern concepts of the red blood cell (RBC) volume regulation are considered. It is shown that the system of ion pumps and channels in the cell membrane ensures the physiological value of volume with a precision of about 10% even at 5- to 7-fold variations of passive membrane permeability for ions. Particular attention is paid to mathematical models for evaluation of the role of different molecular mechanisms in the RBC volume control. It is shown that many questions, for example, ‘why the Na+,K+-ATPase pumps the ions in opposite directions’ or ‘what is the physiological role of Ca2+-activated K+-channels’, cannot be answered without adequate mathematical models of such complex control systems as cell volume control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Human Physiology, Schmidt, R. and Tews, G., Eds., Moscow, Mir, 1996, vol. 1.

    Google Scholar 

  2. Boldyrev, A.A. and Tverdislov, V.A., Molecular Organization and Mechanism of the Functioning of Na-Pump, Blumenfel’d, L.A., Ed., Moscow, VINITI, 1978.

    Google Scholar 

  3. Boldyrev, A.A., Biologicheskie membrany i ionnyi transport (Biological Membranes and Ion Transport), Moscow, Izd. MGU, 1985.

    Google Scholar 

  4. Boldyrev, A.A., Lopina, O.D., Rubtsov, A M., and Svinukhova, I.A., Biokhimiya aktivnogo ionnogo transporta i transportnye ATFazy (Biochemistry of Active Ion Transport and Transport ATPases), Moscow, Izd. MGU, 1983.

    Google Scholar 

  5. Boldyrev, A.A., Kotelevtsev, S.V., Lanio, M., Alvares, K., and Peres, P., Vvedenie v membranologiyu (Introduction to Membranology), Moscow, Izd. MGU, 1990.

    Google Scholar 

  6. Hodgkin, A.L. and Huxley, A.F., Action Potentials Recorded from Inside a Nerve Fiber, Nature, 1939, vol. 144, pp. 710–711.

    Article  Google Scholar 

  7. Hodgkin, A.L. and Huxley, A.F., Currents Carried by Sodium and Potassium Ions through the Membrane of the Giant Axon of Loligo, J. Physiol., 1952, vol. 116, no. 4, pp. 449–472.

    PubMed  CAS  Google Scholar 

  8. Hodgkin, A.L., Ionic Movements and Electrical Activity in Giant Fibers, Proc. Royal Soc. (London), 1958, vol. B148, pp. 1–37.

    Article  Google Scholar 

  9. Hodgkin, A., Nervous Impulse, Moscow, Mir, 1965.

    Google Scholar 

  10. Kahlenberg, A., Urman, B., and Dolansky, D., Preferential Uptake of D-Glucose by Isolated Human Erythrocyte Membranes, Biochemistry, 1971, vol. 10, no. 16, pp. 3154–3162.

    Article  PubMed  CAS  Google Scholar 

  11. Jacobs, R.L., Stead, L.M., Brosnan, M.E., and Brosnan, J.T., Hyperglucagonemia in Rats Results in Decreased Plasma Homocysteine and Increased Flux through the Transsulfuration Pathway in Liver, J. Biol. Chem., 2001, vol. 276, no. 47, pp. 43740–43747.

    Article  PubMed  CAS  Google Scholar 

  12. Kilberg, S.M., Handlogten, M.E., and Christensen, H.N., Characteristics of an Amino Acid Transport System in Rat Liver for Glutamine, Asparagines, Histidine, and Closely Related Analogs, J. Biol. Chem., 1980, vol. 255, no. 9, pp. 4011–4019.

    PubMed  CAS  Google Scholar 

  13. Tosteson, D.C., Halide Transport in Red Blood Cells, Acta Physiol. Scand., 1959, vol. 46, pp. 19–41.

    Article  CAS  Google Scholar 

  14. Tosteson, D.C. and Hoffman, J.F., Regulation of Cell Volume by Active Cation Transport in High and Low Potassium Sheep Red Cells, J. Gen. Physiol., 1960, vol. 44, pp. 169–194.

    Article  PubMed  CAS  Google Scholar 

  15. Jakobsson, E., Interactions of Cell Volume, Membrane Potential, and Membrane Transport Parameters, Amer. J. Physiol., 1980, vol. 238, no. 5, pp. C196–C206.

    PubMed  CAS  Google Scholar 

  16. Ataullakhanov, F.I., Regulation of Metabolism in Red Blood Cells, Doctoral (Biology) Dissertation, Moscow, Institute of Biophysics, Ac. Sci. USSR, 1983.

    Google Scholar 

  17. Werner, A. and Heinrich, R., A Kinetic Model for the Interaction of Energy Metabolism and Osmotic States of Human Erythrocytes. Analysis of the Stationary “in vivo” State and of Time Dependent Variations under Blood Preservation Conditions, Biomed. Biochim. Acta, 1985, vol. 44, no. 2, pp. 185–212.

    PubMed  CAS  Google Scholar 

  18. Lew, V.L. and Bookchin, R.M., Volume, pH, and Ion-Content Regulation in Human Red Cells: Analysis of Transient Behavior with an Integrated Model, J. Membr. Biol., 1986, vol. 92, no. 1, pp. 57–74.

    Article  PubMed  CAS  Google Scholar 

  19. Moroz, I.A., Ataullakhanov, F.I., Pichugin, A.V., Kiyatkin, A.B., and Vitvitsky, V.M., Mathematical Model of Regulation of Red Blood Cell Volume, Biol. Membrany (Rus.), 1989, vol. 6, pp. 409–419.

    Google Scholar 

  20. Ataullakhanov, F.I., Vitvitsky, V.M., Kiyatkin, A.B., and Pichugin, A.V., Regulation of the Volume of Human Red Blood Cells. The Role of Calcium-Activated Potassium Channels, Biofizika (Rus.), 1993, vol. 38, pp. 809–821.

    CAS  Google Scholar 

  21. Martinov, M.V., Vitvitsky, V.M., and Ataullakhanov, F.I., Volume Stabilization in Human Erythrocytes: Combined Effects of Ca2+-Dependent Potassium Channels and Adenylate Metabolism, Biophys. Chem., 1999, vol. 80, no. 3, pp. 199–215.

    Article  PubMed  CAS  Google Scholar 

  22. Hodgkin, A.L. and Huxley, A.F., A Quantitative Description of Membrane Current and Its Application to Conduction and Excitation in Nerve, J. Physiol., 1952, vol. 117, no.4, pp. 500–544.

    PubMed  CAS  Google Scholar 

  23. Skou, J.C., The Influence of Some Cations on an Adenosine Triphosphatase from Peripheral Nerves, Biochim. Biophys. Acta, 1957, vol. 23, no. 2, pp. 394–401.

    Article  PubMed  CAS  Google Scholar 

  24. Kotyk, A. and Yanachek, K., Membrannyi transport (Membrane Transport), Moscow, Mir, 1980.

    Google Scholar 

  25. Post, R.L., Merritte, C.R., Kinsolving, C.R., and Albright, C.D., Membrane Adenosine Triphosphatase As a Participant in the Active Transport of Sodium and Potassium in the Human Erythrocyte, J. Biol. Chem., 1960, vol. 235, pp. 1796–1802.

    PubMed  CAS  Google Scholar 

  26. Marchesi, V.T., Furthmayr, H., and Tomita, M., The Red Cell Membrane, Annu. Rev. Biochem., 1976, vol. 45, pp. 667–698.

    Article  PubMed  CAS  Google Scholar 

  27. Tosteson, D.C., The Cellular Functions of Active Transport of K and Na, Physiol. Pharmacol. Physicians, 1965, vol. 3, no. 10, pp. 1–6.

    PubMed  CAS  Google Scholar 

  28. Hoffman, P.G. and Tosteson, D.C., Active Sodium and Potassium Transport in High Potassium and Low Potassium Sheep Red Cells, J. Gen. Physiol., 1971, vol. 58, no. 4, pp. 438–466.

    Article  PubMed  CAS  Google Scholar 

  29. Tosteson, D.C., Active Transport, Genetics, and Cellular Evolution, Fed. Proc., 1963, vol. 22, pp. 19–26.

    PubMed  CAS  Google Scholar 

  30. Guharay, F. and Sachs, F., Stretch-Activated Single Ion Channel Currents in Tissue-Cultured Embryonic Chick Skeletal Muscle, J. Physiol., 1984, vol. 352, pp. 685–701.

    PubMed  CAS  Google Scholar 

  31. Gennis, R., Biomembrany. Molekuliarnaya struktura i funktsii (Biomembranes. Molecular Structure and Functions), Moscow, Mir, 1997.

    Google Scholar 

  32. White, A., Handler, F., Smith, E., Hill, R., and Lehman, I., Osnovy biokhimii (Bases of Biochemistry), Moscow, Mir, 1981.

    Google Scholar 

  33. Beutler, E., Red Cell Metabolism, N.Y., Grune & Stratton, 1975.

    Google Scholar 

  34. Jacobash, G.S., Minakami, S., and Rapoport, S.M., Cellular and Molecular Biology of Erythrocytes, Yoshikawa, J. and Rapoport, S.M., Eds., Tokyo, University of Tokyo Press, 1974, pp. 55–142.

    Google Scholar 

  35. Evans, E.A. and Skalak, R., Mechanics and the Thermodynamics of Biomembranes, Boca Raton, Fl., Crc Press, 1980.

    Google Scholar 

  36. Markin, V.S., Membrane Organization in the Layer Plane and Cell Shape. Biological Consequences of the Theory, Biofizika (Rus.), 1981, vol. 26, no. 1, pp. 158–167.

    CAS  Google Scholar 

  37. Rapoport, S.M., The Regulation of Glycolysis in Mammalian Erythrocytes, Essays Biochem., 1968, vol. 4, pp. 69–103.

    PubMed  CAS  Google Scholar 

  38. Rapoport, S.M. and Muller, M., Cellular and Molecular Biology of Erythrocytes, Yoshikawa, J. and Rapoport, S.M., Eds., Tokyo, University of Tokyo Press, 1974, pp. 167–179.

    Google Scholar 

  39. Grimes, A.G., Human Red Cell Metabolism, Oxford, Blackwell, 1980.

    Google Scholar 

  40. Lionetti, F.J., Cellular and Molecular Biology of Erythrocytes, Yoshikawa, J. and Rapoport, S.M., Eds., Tokyo, University of Tokyo Press, 1974, pp. 143–166.

    Google Scholar 

  41. Kilmartin, J.V. and Rossi-Barnardi, L., Interaction of Hemoglobin with Hydrogen Ions, Carbon Dioxide, and Organic Phosphates, Physiol. Rev., 1973, vol. 53, pp. 836–890.

    PubMed  CAS  Google Scholar 

  42. Mohandas, N., Chasis, J.A. and Shohet, S.B., The Influence of Membrane Skeleton on Red Cell Deformability, Membrane Material Properties, and Shape, Semin. Hematol., 1983, vol. 20, pp. 225–242.

    PubMed  CAS  Google Scholar 

  43. Mueller, T.J., Jackson, C.W., Dokter, M.E., and Morrison, M., Membrane Skeletal Alterations during in vivo Mouse Red Cell Aging. Increase in the Band 4.1a:4.1b Ratio, J. Clin. Invest., 1987, vol. 79, pp. 492–499.

    Article  PubMed  CAS  Google Scholar 

  44. Markin, V.S., Lateral Organization of Membranes and Cell Shapes, Biophys. J., 1981, vol. 36, no. 1, pp. 1–19.

    Article  PubMed  CAS  Google Scholar 

  45. Glaser, R. and Leitmannova, A., Mathematical Modelling of Shape-Transformations of Human Erythrocytes, Acta. Biol. Med. Ger., 1977, vol. 36, nos. 5–6, pp. 859–869.

    PubMed  CAS  Google Scholar 

  46. Leitmannova, A. and Glaser, R., Mathematical Modelling of Human Echinocytes and the Membrane Bending of Discocytes Stomatocytes and Echinocytes, Studia Biophysica, 1977, vol. 64, no. 2, pp. 123–141.

    Google Scholar 

  47. Fung, Y.C., Tsang, W.C., and Patitucci, P., High-Resolution Data on the Geometry of Red Blood Cells., Biorheology, 1981, vol. 18, nos. 3–6, pp. 369–385.

    PubMed  CAS  Google Scholar 

  48. Canham, P.B. and Burton, A.C., Distribution of Size and Shape in Populations of Normal Human Red Cells, Circ. Res., 1968, vol. 22, no. 3, pp. 405–422.

    PubMed  CAS  Google Scholar 

  49. Waugh, R.E. and Sarelius, I.H., Effects of Lost Surface Area on Red Blood Cells and Red Blood Cell Survival in Mice, Am. J. Physiol., 1996, vol. 271, no. 6, Pt 1, pp. C1847–C1852.

    PubMed  CAS  Google Scholar 

  50. Clark, M.R., Computation of the Average Shear-Induced Deformation of Red Blood Cells As a Function of Osmolality, Blood Cells, 1989, vol. 15, no. 2, pp. 427–439.

    PubMed  CAS  Google Scholar 

  51. Linderkamp, O. and Meiselman, H.J., Geometric, Osmotic, and Membrane Mechanical Properties of Density-Separated Human Red Cells, Blood, 1982, vol. 59, no. 6, pp. 1121–1127.

    PubMed  CAS  Google Scholar 

  52. Nash, G.B., O’Brien, E., Gordon-Smith, E.C., and Dormandy, J.A., Abnormalities in the Mechanical Properties of Red Blood Cells Caused by Plasmodium falciparum, Blood, 1989, vol. 74, no. 2, pp. 855–861.

    PubMed  CAS  Google Scholar 

  53. Marvel, J.S., Sutera, S.P., Krogstad, D.J., Zarkowsky, H.S., and Williamson, J.R., Accurate Determination of Mean Cell Volume by Isotope Dilution in Erythrocyte Populations with Variable Deformability, Blood Cells, 1991, vol. 17, no. 3, pp. 497–512.

    PubMed  CAS  Google Scholar 

  54. Paulitschke, M. and Nash, G.B., Micropipette Methods for Analyzing Blood Cell Rheology and Their Application to Clinical Research, Clin. Hemorheol., 1993, vol. 13, pp. 407–434.

    Google Scholar 

  55. Weed, R.J. and Reed, C.F., Metabolic Dependence of Red Cell Deformability, Amer. J. Med., 1966, vol. 41, pp. 681–698.

    Article  PubMed  CAS  Google Scholar 

  56. Whittam, R. and Ager, M.E., Vectorial Aspects of Adenosine-Triphosphatase Activity in Erythrocyte Membranes, Biochem. J., 1964, vol. 93, pp. 337–348.

    PubMed  CAS  Google Scholar 

  57. Gamble, J.L., Chemical Anatomy, Physiology and Extracellular Fluid, 6th Ed. Cambridge, Mass., Harvard University Press, 1954.

    Google Scholar 

  58. Klausner, M.A., Hirsch, L.J., Leblond, P.F., Chamberlain, J.K., Klemperer, M.R., and Segel, G.B., Contrasting Splenic Mechanisms in the Blood Clearance of Red Blood Cells and Colloidal Particles, Blood, 1975, vol. 46, no. 6, pp. 965–976.

    PubMed  CAS  Google Scholar 

  59. Chen, L.T. and Weiss, L., The Role of the Sinus Wall in the Passage of Erythrocytes through the Spleen, Blood, 1973, vol. 41, no. 4, pp. 529–537.

    PubMed  CAS  Google Scholar 

  60. Markin, V.S. and Chizmadzhev, Yu.A., Indutsirovannyi ionnyi transport (Induced Ion Transport), Moscow, Nauka, 1974, pp. 38–45.

    Google Scholar 

  61. Vereninov, A.A. and Marakhova, I.I., Transport ionov u kletok v kul’ture (Ion Transport in the Cell in Culture), Leningrad, Nauka, 1986.

    Google Scholar 

  62. Knauf, P.A., Fuhrmann, G.F., Rothstein, S., and Rothstein, A., The Relationship between Anion Exchange and Net Anion Flow across the Human Red Blood Cell Membrane, J. Gen. Physiol., 1977, vol. 69, no. 3, pp. 363–386.

    Article  PubMed  CAS  Google Scholar 

  63. Raftos, J.E. and Lew, V.L., Effect of Intracellular Magnesium on Calcium Extrusion by the Plasma Membrane Calcium Pump of Intact Human Red Cells, J. Physiol., 1995, vol. 489, pt. 1, pp. 63–72.

    PubMed  CAS  Google Scholar 

  64. Rothstein, A., Cabantchik, Z.I., and Knauf, P., Mechanism of Anion Transport in Red Blood Cells: Role of Membrane Proteins, Fed. Proc., 1976, vol. 35, no. 1, pp. 3–10.

    PubMed  CAS  Google Scholar 

  65. Cabantchik, Z.I., Knauf, P.A., and Rothstein, A., The Anion Transport System of the Red Blood Cell. The Role of Membrane Protein Evaluated by the Use of ‘Probes’, Biochim. Biophys. Acta, 1978, vol. 515, no. 3, pp. 239–302.

    PubMed  CAS  Google Scholar 

  66. Sen, A.K. and Post, R.L., Stoichiometry and Localization of Adenosine Triphosphate-Dependent Sodium and Potassium Transport in the Erythrocyte, J. Biol. Chem., 1964, vol. 239, pp. 345–352.

    PubMed  CAS  Google Scholar 

  67. Bonting, S.L., Membranes and Ion Transport, Bittar, E.E., Ed., London, Wiley Interscience, 1970, vol. 1, pp. 257–363.

    Google Scholar 

  68. Robinson, J.D., Free Mg2+ and Proposed Isomerizations of the (Na+ Plus K+)-Dependent ATPase, FEBS Lett., 1974, vol. 47, no. 2, pp. 352–355.

    Article  PubMed  CAS  Google Scholar 

  69. Kennedy, B.G., Lunn, G., and Hoffman, J.F., Effects of Altering the ATP/ADP Ratio on Pump-Mediated Na/K and Na/Na Exchanges in Resealed Human Red Blood Cell Ghosts, J. Gen. Physiol., 1986, vol. 87, no. 1, pp. 47–72.

    Article  PubMed  CAS  Google Scholar 

  70. Ataullakhanov, F.I., Buravtsev, V.N., Vitvitsky, V.M., Dibrov, B.F., Zhabotinsky, A.M., Pichugin, A.V., Kholodenko, B.N., and Ehrlich, L.I., The Association between the Rate of ATP-Consuming Processes and ATP Concentration in Intact Red Blood Cells, Biokhimiya (Rus.), 1980, vol. 45, pp. 1075–1079.

    CAS  Google Scholar 

  71. Martinov, M.V., Plotnikov, A.G., Vitvitsky, V.M., and Ataullakhanov, F.I., Deficiencies of Glycolytic Enzymes As a Possible Cause of Hemolytic Anemia, Biochim. Biophys. Acta, 2000, vol. 1474, no. 1, pp. 75–87.

    PubMed  CAS  Google Scholar 

  72. Segel, G.B., Feig, S.A., Glader, B.E., Muller, A., Dutcher, P., and Nathan, D.G., Energy Metabolism in Human Erythrocytes: The Role of Phosphoglycerate Kinase in Cation Transport, Blood, 1975, vol. 46, no. 2, pp. 271–278.

    PubMed  CAS  Google Scholar 

  73. Ross, P.D. and Minton, A.P., Hard Quasispherical Model for the Viscosity of Hemoglobin Solutions, Biochem. Biophys. Res. Commun., 1977, vol. 76, no. 4, pp. 971–976.

    Article  PubMed  CAS  Google Scholar 

  74. Levtov, V.A., Regirer, S.A., and Shadrina, N.Kh., Reologiya krovi (Rheology of Blood), Moscow, Meditsina, 1982.

    Google Scholar 

  75. Baskurt, O.K. and Meiselman, H.J., Blood Rheology and Hemodynamics, Semin. Thromb. Hemost., 2003, vol. 29, no. 5, pp. 435–450.

    Article  PubMed  CAS  Google Scholar 

  76. Ataullakhanov, F.I., Vitvitsky, V.M., Lisovskaya, I.L., and Tuzhilova, E.G., The Analysis of Geometrical Parameters and Mechanical Properties of Red Blood Cells by the Method of Filtration through Nuclear Membrane Filters. I. Mathematical Model, Biofizika (Rus.), 1994, vol. 39, pp. 672–680.

    CAS  Google Scholar 

  77. Lisovskaya, I.L., Ataullakhanov, F.I., Tuzhilova, E.G., and Vitvitsky, V.M., The Analysis of Geometrical Parameters and Mechanical Properties of Red Blood Cells by the Method of Filtration through Nuclear Membrane Filters. II. Experimental Verification of the Mathematical Model, Biofizika (Rus.), 1994, vol. 39, pp. 864–871.

    CAS  Google Scholar 

  78. Orlov, S.N., Pokudin, N.I., El-Rabi, L.S., Brusovanik, V.I., and Kubatiyev, A.A., The Transport of Ions to Human Red Blood Cells at Different Forms of Hemolytic Anemia: Correlation Analysis, Biokhimiya (Rus.), 1993, vol. 58, no. 6, pp. 866–873.

    CAS  Google Scholar 

  79. Hebbel, R.P. and Mohandas, N., Reversible Deformation-Dependent Erythrocyte Cation Leak. Extreme Sensitivity Conferred by Minimal Peroxidation, Biophys. J., 1991, vol. 60, no. 3, pp. 712–715.

    Article  PubMed  CAS  Google Scholar 

  80. Deuticke, B., Heller, K.B., and Haest, C.W., Leak Formation in Human Erythrocytes by the Radical-Forming Oxidant T-Butylhydroperoxide, Biochim. Biophys. Acta, 1986, vol. 854, no. 2, pp. 169–183.

    Article  PubMed  CAS  Google Scholar 

  81. Kramer, H.J., Gospodinov, D., and Kruck, F., Functional and Metabolic Studies on Red Blood Cell Sodium Transport in Chronic Uremia, Nephron, 1976, vol. 16, no. 5, pp. 344–358.

    Article  PubMed  CAS  Google Scholar 

  82. Illner, H. and Shires, G.T., Changes in Sodium, Potassium, and Adenosine Triphosphate Contents of Red Blood Cells in Sepsis and Septic Shock, Circ. Shock, 1982, vol. 9, no. 3, pp. 259–267.

    PubMed  CAS  Google Scholar 

  83. Brumen, M. and Heinrich, R., A Metabolic Osmotic Model of Human Erythrocytes, Biosystems, 1984, vol. 17, no. 2, pp. 155–169.

    Article  PubMed  CAS  Google Scholar 

  84. Beauge, L. and Lew, V.L., Membrane Transport in Red Cells, Ellory, J.C. and Lew, V.L., Eds., Academic Press, 1977, p. 39.

  85. Castranova, V., Weise, M.J., and Hoffman, J.F., Anion Transport in Dog, Cat, and Human Red Cells. Effects of Varying Cell Volume and Donnan Ratio, J. Gen. Physiol., 1979, vol. 74, no. 3, pp. 319–334.

    Article  PubMed  CAS  Google Scholar 

  86. Gardos, G., The Function of Calcium in the Potassium Permeability of Human Erythrocytes, Biochim. Biophys. Acta, 1958, vol. 30, no. 3, pp. 653–654.

    Article  PubMed  CAS  Google Scholar 

  87. Gardos, G., The Role of Calcium in the Potassium Permeability of Human Erythrocytes, Acta Physiol. Hung., 1959, vol. 15, no. 2, pp. 121–125.

    PubMed  CAS  Google Scholar 

  88. Hille, B. and Schwarz, W., Potassium Channels As Multi-Ion Single-File Pores, J. Gen. Physiol., 1978, vol. 72, no. 4, pp. 409–442.

    Article  PubMed  CAS  Google Scholar 

  89. Maher, A.D. and Kuchel, P.W., The Gardos Channel: A Review of the Ca2+-Activated K+ Channel in Human Erythrocytes, Int. J. Biochem. Cell. Biol., 2003, vol. 35, no. 8, pp. 1182–1197 [Erratum in: Int. J. Biochem. Cell. Biol., 2003, vol. 35, no. 12, pp. 1682.]

    Article  PubMed  CAS  Google Scholar 

  90. Leinders, T., van Kleef, R.G.D.M., and Vijverberg, H.P.M., Single Ca2+-Activated K+ Channels in Human Erythrocytes: Ca2+-Dependence of Opening Frequency but Not of Open Lifetimes, Biochim. Biophys. Acta, 1992, vol. 1112, no. 1, pp. 67–74.

    Article  PubMed  CAS  Google Scholar 

  91. Leinders, T., van Kleef, R.G., and Vijverberg, H.P., Distinct Metal Ion Binding Sites on Ca2+-Activated K+ Channels in Inside-Out Patches of Human Erythrocytes, Biochim. Biophys. Acta, 1992, vol. 1112, no. 1, pp. 75–82.

    Article  PubMed  CAS  Google Scholar 

  92. Simons, T.J., Calcium-Dependent Potassium Exchange in Human Red Cell Ghosts, J. Physiol., 1976, vol. 256, no. 1, pp. 227–244.

    PubMed  CAS  Google Scholar 

  93. Lew, V.L. and Ferreira, H.G., Variable Ca Sensitivity of a K-Selective Channel in Intact Red-Cell Membranes, Nature, 1976, vol. 263, no. 5575, pp. 336–338.

    Article  PubMed  CAS  Google Scholar 

  94. Wiley, J.S. and McCulloch, K.E., Calcium Ions, Drug Action and the Red Cell Membrane, Pharmacol. Ther., 1982, vol. 18, no. 2, pp. 271–792.

    Article  PubMed  CAS  Google Scholar 

  95. Li, Q., Jungmann, V., Kiyatkin, A., and Low, P.S., Prostaglandin E2 Stimulates a Ca2+-Dependent K+ Channel in Human Erythrocytes and Alters Cell Volume and Filterability, J. Biol. Chem., 1996, vol. 271, no. 31, pp. 18651–18656.

    Article  PubMed  CAS  Google Scholar 

  96. Rivera, A., Rotter, M.A., and Brugnara, C., Modulation of Gardos Channel Activity by Cytokines in Sickle Erythrocytes, Am. J. Physiol., 1999, vol. 277, no. 4, pt. 1, pp. 746–754.

    Google Scholar 

  97. Rivera, A., Jarolim, P., and Brugnara, C., Modulation of Gardos Channel Activity by Cytokines in Sickle Erythrocytes, Blood, 2002, vol. 99, pp. 357–603.

    Article  PubMed  CAS  Google Scholar 

  98. Boytler, E., Narusheniya metabolizma eritrotsytov i gemoliticheskaya anemiya (Disturbance of the Metabolism of Red Blood Cells and Hemolytic Anemia), Moscow, Meditsina, 1981.

    Google Scholar 

  99. Halperin, J.A., Brugnara, C., Kopin, A.S., Ingwall, J., and Tosteson, D.C., Properties of the Na+-K+ Pump in Human Red Cells with Increased Number of Pump Sites, J. Clin. Invest., 1987, vol. 80, no. 1, pp. 128–137.

    Article  PubMed  CAS  Google Scholar 

  100. Ataullakhanov, F.I., Komarova, S.V., Martinov, M.V., and Vitvitsky, V.M., A Possible Role of Adenylate Metabolism in Human Erythrocytes. 2. Adenylate Metabolism Is Able to Improve the Erythrocyte Volume Stabilization, J. Theor. Biol., 1996, vol. 183, pp. 75–86.

    Article  Google Scholar 

  101. Haas, M., Schmidt, W.F., 3rd, and McManus, T.J., Catecholamine-Stimulated Ion Transport in Duck Red Cells. Gradient Effects in Electrically Neutral [Na + K + 2Cl] Co-Transport, J. Gen. Physiol., 1982, vol. 80, no. 1, pp. 125–147.

    Article  PubMed  CAS  Google Scholar 

  102. Duhm, J. and Gobel, B.O., Role of the Furosemide-Sensitive Na+/K+ Transport System in Determining the Steady-State Na+ and K+ Content and Volume of Human Erythrocytes in vitro and in vivo, J. Membr. Biol., 1984, vol. 77, no. 3, pp. 243–254.

    Article  PubMed  CAS  Google Scholar 

  103. Lauf, P.K., Bauer, J., Adragna, N.C., Fujise, H., Zade-Oppen, A.M., Ryu, K.H., and Delpire, E., Erythrocyte K-Cl Cotransport: Properties and Regulation, Am. J. Physiol., 1992, vol. 263, no. 5, pt. 1, pp. C917–C932.

    PubMed  CAS  Google Scholar 

  104. Duhm, J. and Becker, B.F., Studies on Lithium Transport across the Red Cell Membrane. V. On the Nature of the Na+-Dependent Li+ Countertransport System of Mammalian Erythrocytes, J. Membr. Biol., 1979, vol. 51, nos. 3–4, pp. 263–286.

    PubMed  CAS  Google Scholar 

  105. Komarova, S.V., Mosharov, E.V., Vitvitsky, V.M., and Ataullakhanov, F.I., Adenine Nucleotide Synthesis in Human Erythrocytes Depends on the Mode of Supplementation of Cell Suspension with Adenosine, Blood Cells Mol. Dis., 1999, vol. 25, nos. 3–4, pp. 170–179.

    Article  PubMed  CAS  Google Scholar 

  106. Sardini, A., Amey, J.S., Weylandt, K.H., Nobles, M., Valverde, M.A., and Higgins, C.F., Cell Volume Regulation and Swelling-Activated Chloride Channels, Biochim. Biophys. Acta, 2003, vol. 1618, no. 2, pp. 153–162.

    Article  PubMed  CAS  Google Scholar 

  107. Lang, F., Lang, K.S., Wieder, T., Myssina, S., Birka, C., Lang, P.A., Kaiser, S., Kempe, D., Duranton, C., and Huber, S.M., Cation Channels, Cell Volume and the Death of an Erythrocyte, Pflügers Arch., 2003, vol. 447, no. 2, pp. 121–125.

    Article  PubMed  CAS  Google Scholar 

  108. Lang, F., Busch, G.L., Ritter, M., Volkl, H., Waldegger, S., Gulbins, E., and Haussinger, D., Functional Significance of Cell Volume Regulatory Mechanisms, Physiol. Rev., 1998, vol. 78, no. 1, pp. 247–306.

    PubMed  CAS  Google Scholar 

  109. Lew, V.L. and Hockaday, A.R., The Effects of Transport Perturbations on the Homeostasis of Erythrocytes, Novartis Found Symp., 1999, vol. 226, pp. 37–50, Discussion, pp. 50–54.

    Article  PubMed  CAS  Google Scholar 

  110. Fraser, J.A. and Huang, C.L., A Quantitative Analysis of Cell Volume and Resting Potential Determination and Regulation in Excitable Cells, J. Physiol., 2004, vol. 559, no. 2, pp. 459–478.

    Article  PubMed  CAS  Google Scholar 

  111. Pannicke, T., Iandiev, I., Uckermann, O., Biedermann, B., Kutzera, F., Wiedemann, P., Wolburg, H., Reichenbach, A., and Bringmann, A., A Potassium Channel-Linked Mechanism of Glial Cell Swelling in the Postischemic Retina, Mol. Cell. Neurosci., 2004, vol. 26, no. 4, pp. 493–502.

    Article  PubMed  CAS  Google Scholar 

  112. Weinstein, A.M., Modeling Epithelial Cell Homeostasis: Assessing Recovery and Control Mechanisms, Bull. Math. Biol., 2004, vol. 66, no. 5, pp. 1201–1240.

    Article  PubMed  Google Scholar 

  113. Ehrenfeld, J., Raschi, C., and Brochiero, E., Basolateral Potassium Membrane Permeability of A6 Cells and Cell Volume Regulation, J. Membr. Biol., 1994, vol. 138, no. 3, pp. 181–195.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. I. Ataullakhanov.

Additional information

Original Russian Text © F.I. Ataullakhanov, N.O. Korunova, I.S. Spiridonov, I.O. Pivovarov, N.V. Kalyagina, M.V. Martinov, 2009, published in Biologicheskie Membrany, 2009, Vol. 26, No. 3, pp. 163–179.

The article is translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ataullakhanov, F.I., Korunova, N.O., Spiridonov, I.S. et al. How erythrocyte volume is regulated, or what mathematical models can and cannot do for biology. Biochem. Moscow Suppl. Ser. A 3, 101–115 (2009). https://doi.org/10.1134/S1990747809020019

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747809020019

Key words

Navigation