Skip to main content
Log in

Visualization of Single Escherichia coli Cells in the State of SOS Response using Expansion Microscopy

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

Expansion microscopy (ExM) is a sample preparation technique which allows to achieve improved visualization of biological structures based on the physical expansion of the sample. This method is used in combination with traditional light microscopy and allows to achieve visualization of biological structures with higher resolution, without the use of complex technical devices typical for super-resolution microscopy. Unlike the methods of super-resolution microscopy, expansion microscopy does not make it possible to overcome the diffraction limit; however, the observed effect can be considered equal to an increase in the spatial resolution. The relative simplicity of the method and low requirements for the microscope used, have made expansion microscopy a fairly popular method to visualize various biological structures recently. This paper describes the use of expansion microscopy to visualize DNA and structures formed by the FtsZ protein in Escherichia coli cells during the SOS response. The results of the work confirm the previously obtained data that the FtsZ protein in cells in the state of the SOS response is unevenly distributed. The protocol used in this work for visualization of E. coli cells using the expansion microscopy method can be used in the future to study the internal structures of other cells, both bacterial and eukaryotic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Asano, S.M., Gao, R., Wassie, A.T., Tillberg, P.W., Chen, F., and Boyden, E.S., Expansion microscopy: protocols for imaging proteins and RNA in cells and tissues, Curr. Prot. Cell Biol., 2018, vol. 80, p. e56. https://doi.org/10.1002/cpcb.56

    Article  CAS  Google Scholar 

  2. Chang, J.-B., Chen, F., Yoon, Y.-G., Jung, E.E., Babcock, H., Kang, J.S., Asano, S., Suk, H.-J., Pak, N., Tillberg, P.W., Wassie, A.T., Cai, D., and Boyden, E.S., Iterative expansion microscopy, Nat. Methods, 2017, vol. 14, p. 593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chen, Y., Milam, S.L., and Erickson, H.P., SulA inhibits assembly of FtsZ by a simple sequestration mechanism, Biochemistry, 2012, vol. 51, p. 3100.

    Article  CAS  PubMed  Google Scholar 

  4. Chen, F., Tillberg, P.W., and Boyden, E.S., Expansion microscopy, Science, 2015, vol. 347, p. 543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chozinski, T.J., Halpern, A.R., Okawa, H., Kim, H.-J., Tremel, G.J., Wong, R.O.L., and Vaughan, J.C., Expansion microscopy with conventional antibodies and fluorescent proteins, Nat. Methods, 2016, vol. 13, p. 485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Derevtsova, K.Z., Pchitskaya, E.I., Rakovskaya, A.V., and Bezprozvanny, I.B., Applying the expansion microscopy method in neurobiology, Ross. Fiziol. Zh. im. I.M. Sechenova, 2021, vol. 107, nos. 4–5, p. 568.

    CAS  Google Scholar 

  7. Feng, H., Wang, X., Xu, Z., Zhang, X., and Gao, Y., Super-resolution fluorescence microscopy for single cell imaging, in Single Cell Biomedicine, Singapore: Springer Singapore, 2018, p. 59.

    Google Scholar 

  8. Klementieva, N.V., Zagaynova, E.V., Lukyanov, K.A., and Mishin, A.S., The principles of super-resolution fluorescence microscopy (review), Sovrem. Tekhnol. Med., 2016, vol. 8, p. 130.

    Article  Google Scholar 

  9. Li, H., Warden, A.R., He, J., Shen, G., and Ding, X., Expansion microscopy with ninefold swelling (NIFS) hydrogel permits cellular ultrastructure imaging on conventional microscope, Sci. Adv., 2022, vol. 8. https://doi.org/10.1126/sciadv.abm4006

  10. Moore, D.A., Whatley, Z.N., Joshi, C.P., Osawa, M., and Erickson, H.P., Probing for binding regions of the FtsZ protein surface through site-directed insertions: discovery of fully functional FtsZ-fluorescent proteins, J. Bacteriol., 2017, vol. 199, p. e00553-16. https://doi.org/10.1128/JB.00553-16

    Article  CAS  PubMed  Google Scholar 

  11. Renz, M., Fluorescence microscopy—a historical and technical perspective, Cytometry, Part A, 2013, vol. 83, p. 767.

    Article  Google Scholar 

  12. Sanderson, M.J., Smith, I., Parker, I., and Bootman, M.D., Fluorescence microscopy, Cold Spring Harbor Protoc., 2014, vol. 2014, p. pdb.top071795. https://doi.org/10.1101/pdb.top071795

  13. Tillberg, P.W., Chen, F., Piatkevich, K.D., Zhao, Y., Yu, C.-C., English, B.P., Gao, L., Martorell, A., Suk, H.-J., Yoshida, F., DeGennaro, E.M., Roossien, D.H., Gong, G., Seneviratne, U., Tannenbaum, S.R., et al., Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies, Nat. Biotech., 2016, vol. 34, p. 987.

    Article  CAS  Google Scholar 

  14. Vedyaykin, A.D., Sabantsev, A.V., Vishnyakov, I.E., Borchsenius, S.N., Fedorova, Y.V., Melnikov, A.S., Serdobintsev, P.Y., and Khodorkovskii, M.A., Localization microscopy study of FtsZ structures in E. coli cells during SOS-response, J. Phys. Conf. Ser., 2014, vol. 541, p. 012036. https://doi.org/10.1088/1742-6596/541/1/012036

    Article  Google Scholar 

  15. Vedyaykin, A., Rumyantseva, N., Khodorkovskii, M., and Vishnyakov, I., SulA is able to block cell division in Escherichia coli by a mechanism different from sequestration, Biochim. Biophys. Res. Commun., 2020, vol. 525, p. 948.

    Article  CAS  Google Scholar 

  16. Verma, S.C., Qian, Z., and Adhya, S.L., Architecture of the Escherichia coli nucleoid, PLoS Genet., 2019, vol. 15, p. e1008456. https://doi.org/10.1371/journal.pgen.1008456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wassie, A.T., Zhao, Y., and Boyden, E.S., Expansion microscopy: principles and uses in biological research, Nat. Methods, 2019, vol. 16, p. 33.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was carried out using scientific equipment of the Center of Shared Usage “The analytical center of nano- and biotechnologies of SPbPU”.

Funding

The study was supported by the Ministry of Education and Science of the Russian Federation (Grant MK-1345.2022.1.4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. E. Vishnyakov.

Ethics declarations

The authors declare that they have no conflicts of interest.

This article does not contain any studies using animals or human participants as subjects.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rumyantseva, N.A., Golofeeva, D.M., Vishnyakov, I.E. et al. Visualization of Single Escherichia coli Cells in the State of SOS Response using Expansion Microscopy. Cell Tiss. Biol. 17, 692–698 (2023). https://doi.org/10.1134/S1990519X2306010X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X2306010X

Keywords:

Navigation