Skip to main content

Expansion Microscopy of Bacillus subtilis

  • Protocol
  • First Online:
Antibiotics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2601))

Abstract

Expansion microscopy enables super-resolved visualization of specimen without the need of highly sophisticated and expensive optical instruments. Instead, the method is executed with conventional chemicals and lab equipment. ImagingĀ of bacteria is performed using standard fluorescence microscopy. This chapter describes a protocol for the expansion microscopy of Bacillus subtilis expressing DivIVA-GFP. In addition, the cell wall was labeled by wheat germ agglutinin. Here, we place emphasis on the challenges of selecting the protein and organism of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schermelleh L, Ferrand A, Huser T et al (2019) Super-resolution microscopy demystified. Nat Cell Biol 21:72ā€“84. https://doi.org/10.1038/s41556-018-0251-8

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  2. Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19:780ā€“782. https://doi.org/10.1364/ol.19.000780

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  3. Betzig E, Patterson GH, Sougrat R et al (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642ā€“1645. https://doi.org/10.1126/science.1127344

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  4. Hess ST, Girirajan TPK, Mason MD (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91:4258ā€“4272. https://doi.org/10.1529/biophysj.106.091116

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  5. Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3:793ā€“795. https://doi.org/10.1038/nmeth929

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  6. Chen F, Tillberg PW, Boyden ES (2015) Optical imaging. Expansion microscopy. Science 347:543ā€“548. https://doi.org/10.1126/science.1260088

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  7. Zhang YS, Chang J-B, Alvarez MM et al (2016) Hybrid microscopy: enabling inexpensive high-performance imaging through combined physical and optical magnifications. Sci Rep 6:22691. https://doi.org/10.1038/srep22691

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  8. Kunz TC, RĆ¼hling M, Moldovan A et al (2021) The expandables: cracking the staphylococcal cell wall for expansion microscopy. Front Cell Infect Microbiol 11:644750. https://doi.org/10.3389/fcimb.2021.644750

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  9. Lim Y, Shiver AL, Khariton M et al (2019) Mechanically resolved imaging of bacteria using expansion microscopy. PLoS Biol 17:e3000268. https://doi.org/10.1371/journal.pbio.3000268

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  10. Kunz TC, Gƶtz R, Sauer M et al (2019) Detection of chlamydia developmental forms and secreted effectors by expansion microscopy. Front Cell Infect Microbiol 9:276. https://doi.org/10.3389/fcimb.2019.00276

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  11. Gƶtz R, Kunz TC, Fink J et al (2020) Nanoscale imaging of bacterial infections by sphingolipid expansion microscopy. Nat Commun 11:6173. https://doi.org/10.1038/s41467-020-19897-1

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  12. Fan Y, Lim Y, Wyss LS et al (2021) Mechanical expansion microscopy. Methods Cell Biol 161:125ā€“146. https://doi.org/10.1016/bs.mcb.2020.04.013

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  13. Tokunaga M, Imamoto N, Sakata-Sogawa K (2008) Highly inclined thin illumination enables clear single-molecule imaging in cells. Nat Methods 5:159ā€“161. https://doi.org/10.1038/nmeth1171

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  14. Edelstein AD, Tsuchida MA, Amodaj N et al (2014) Advanced methods of microscope control using Ī¼Manager software. J Biol Methods 1:10.14440/jbm.2014.36

    ArticleĀ  Google ScholarĀ 

  15. Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676ā€“682. https://doi.org/10.1038/nmeth.2019

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  16. Eswaramoorthy P, Erb ML, Gregory JA et al (2011) Cellular architecture mediates DivIVA ultrastructure and regulates min activity in Bacillus subtilis. MBio:2. https://doi.org/10.1128/mBio.00257-11

  17. Landvogt L, Ruland JA, Montellese C et al (2019) Observing and tracking single small ribosomal subunits in vivo. Methods 153:63ā€“70. https://doi.org/10.1016/j.ymeth.2018.09.001

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  18. Zhu L, Rajendram M, Huang KC (2021) Effects of fixation on bacterial cellular dimensions and integrity. iScience 24:102348. https://doi.org/10.1016/j.isci.2021.102348

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  19. Tillberg PW, Chen F, Piatkevich KD et al (2016) Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies. Nat Biotechnol 34:987ā€“992. https://doi.org/10.1038/nbt.3625

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

Download references

Acknowledgments

The authors appreciate funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation): Project-ID 398967434 -TRR261 (TRR 261 project Z02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Kubitscheck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Middelhauve, V., Siebrasse, J.P., Kubitscheck, U. (2023). Expansion Microscopy of Bacillus subtilis. In: Sass, P. (eds) Antibiotics. Methods in Molecular Biology, vol 2601. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2855-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2855-3_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2854-6

  • Online ISBN: 978-1-0716-2855-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics