Skip to main content
Log in

Interactions of Free Radical Initiators and Antioxidants in Erythrocytes: An Ex Vivo Study

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

Mammalian erythrocyte is an ideal cell model to study free radical-induced injury since it is enucleated and has a short life span. Various factors can lead to the generation of reactive oxygen species (ROS) in erythrocytes. Evidence indicates that many physiological and pathological conditions develop due to ROS. Erythrocytes when exposed to free radical initiators (FRI) such as H2O2 and azobis (2-amidinopropane) dihydrochloride (AAPH) can result in oxidative stress (OS). Several antioxidants have been employed in various OS conditions to prevent cell damage. However, the alterations due to FRI and antioxidants in erythrocytes are still unclear. Therefore, an in vitro study was conducted using blood samples from male Wistar rats to investigate the influence of FRI and antioxidants such as caffeic acid and p-coumaric acid on erythrocytes. The samples were divided into controls (without FRI; n = 8) and experimentals (with FRI and antioxidants; n = 8). Erythrocyte suspension were assessed for hemoglobin (Hb) and hemolysis, and the hemolysates were analyzed for the following OS markers: SOD, Catalase, TBARS, SH, and AOPP. There were variations in certain OS markers in the experimental groups with respect to controls. Hb significantly decreased in CH group and AOPP significantly increased in CCA, CCO, CCOA, and CCAH groups. SOD and catalase elevated in CCAH and CCOH groups, respectively. TBARS, SH, and hemolysis were maintained in all the groups. The endogenous antioxidant system could scavenge the ROS and protect the erythrocytes from oxidative damage. Azo compounds (AAPH) generate more free radicals when compared to H2O2. OS was minimal in experimental groups as exogenous antioxidants augmented the endogenous antioxidants, however, p-coumaric acid was more efficient than caffeic acid. Hence, these antioxidants can be further employed in similar OS situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Aebi, Catalase in vitro. Oxygen radicals in Biological system, Methods Enzymol., 1984, vol. 105, pp. 121–126.

  2. Ahmad, S. and Mahmood, R., Mercury chloride toxicity in human erythrocytes: enhanced generation of ROS and RNS, hemoglobin oxidation, impaired antioxidant power and inhibition of plasma membrane redox system, Environ. Sci. Pollut. Res. Int., 2019, vol. 26, pp. 5645–5657.

    Article  CAS  PubMed  Google Scholar 

  3. Aruoma, O.I., Free radicals, oxidative stress, and antioxidants in human health and disease, J. Am. Oil Chem. Soc., 1998, vol. 75, pp. 199–212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Banerjee, A., Kunwar, A., Mishra, B., Priyadarsini, K.I., Concentration dependent antioxidant/pro-oxidant activity of curcumin: studies from AAPH induced hemolysis of RBCs, Chem.-Biol. Interact., 2008, vol. 174, p. 134139. https://doi.org/10. 1016/j.cbi.2008.05.009

  5. Berlett, B.S., Stadtman, ER., Protein oxidation in aging, disease, and oxidative stress. J. Biol. Chem., 1997, vol. 272, pp. 20313–20316.

    Article  CAS  PubMed  Google Scholar 

  6. Broncel, D.M., Podsędek, A., Koter-Michalak, M., Hypolipidemic and antioxidant effects of hydroxycinnamic acids, quercetin, and cyanidin 3-glucoside in hypercholesterolemic erythrocytes (in vitro study), Eur. J. Nutr., 2012, vol. 51, 435–443.

    Article  PubMed  Google Scholar 

  7. Buravlev, E.V., Dvornikova, I.V., Schevchenko, O.G., Kutchin, A.V., Synthesis and antioxidant ability of novel derivatives based on para-coumaric acid containing isobornyl groups, Chem. Biodiversity, 2019, vol. 16, p. e1900362. https://doi.org/10.1002/cbdv.201900362

    Article  CAS  Google Scholar 

  8. Cammisotto, V., Nocella, C., Bartimoccia, S., Sanguigni, V., Francomano, D., Sciarretta, S., Pastori, D., Peruzzi, M., Cavarretta, E., D’Amico, A., The role of antioxidants supplementation in clinical practice: focus on cardiovascular risk factors, Antioxidants, 2021, vol. 10, p. 146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chan, A.C., Chow, C.K., and Chiu, D., Interaction of antioxidants and their implication in genetic anemia, Proc. Soc. Exp. Biol. Med., 1999, vol. 222, pp. 274–282.

    Article  CAS  PubMed  Google Scholar 

  10. Cimen, M.Y., Free radical metabolism in human erythrocytes, Int. J. Clin. Chem., 2008, vol. 390, pp. 1–11.

    CAS  Google Scholar 

  11. Clifford, M.N., Chlorogenic acids and other cinnamates—nature, occurrence, dietary burden, absorption and metabolism, J. Sci. Food Agric., 2000, vol. 80, pp. 1033–1043.

    Article  CAS  Google Scholar 

  12. Dodge, J.T., Mitchell, C., and Hanahan, D.J., The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes, Arch. Biochem. Biophys., 1963, vol. 100, no. 1, pp.119–130.

    Article  CAS  PubMed  Google Scholar 

  13. Firuzi, O., Miri, R., Tavakkoli, M., and Saso, L., Antioxidant therapy: current status and future prospects, Curr. Med. Chem., 2011, vol. 18, pp. 3871–3888.

    Article  CAS  PubMed  Google Scholar 

  14. Forman, H.J., Bernardo, A., and Davies, K.J., What is the concentration of hydrogen peroxide in blood and plasma?, Arch Biochem Biophys. 2016, vol. 603, p. 48.

    Article  CAS  PubMed  Google Scholar 

  15. Fujino, T., Watanabe, K., Beppu, M., Kikugawa, K., and Yasuda, H., Identification of oxidized protein hydrolase of human erythrocytes as acylpeptide hydrolase, Biochim. Biophys. Acta, Protein Struct. Mol. Enzymol., 2000, vol. 1478, pp.102–112.

    Article  CAS  Google Scholar 

  16. Hassanein, E.H.M., Sayed, A.M., Hussein, O.E., and Mahmoud, A.M. Coumarins as modulators of the Keap1/Nrf2/ARE signaling pathway, Oxid. Med. Cell. Longev., 2020, vol. 2020, pp. 1–25.

    Article  Google Scholar 

  17. Huyut, Z., Şekeroğlu, M.R., Balahoroğlu, R., Alp, H.H., and Çokluk, E., In stored human blood, the inhibitor effect of tannic acid and caffeic acid on lipid peroxidation and oxidative DNA damage, East. J. Med., 2016a, vol. 21, p.88.

    Article  Google Scholar 

  18. Huyut, Z., Şekeroğlu, M.R., Balahoroğlu, R., Karakoyun, T., and Çokluk, E., The relationship of oxidation sensitivity of red blood cells and carbonic anhydrase activity in stored human blood: effect of certain phenolic compounds, Biomed Res. Int., 2016b, vol. 2016, p. 1.

    Article  Google Scholar 

  19. Kilic, I. and Yesiloglu, Y., Spectroscopic studies on the antioxidant activity of p-coumaric acid, Spectrochim. Acta, A: Mol. Biomol. Spectrosc., 2013, vol. 89, pp. 145–160.

    Google Scholar 

  20. Lee, S.J., Mun, G.I., An, S.M., and Boo, Y.C., Evidence for the association of peroxidases with the antioxidant effect of p-coumaric acid in endothelial cells exposed to high glucose plus arachidonic acid, BMB Rep., 2009, vol. 42, pp. 561–567.

    Article  CAS  PubMed  Google Scholar 

  21. Lopes, R., Costa, M., Ferreira, M., Gameiro, P., Fernandes, S., Catarino, C., Santos-Silva, A., and Paiva-Martins, F., Caffeic acid phenolipids in the protection of cell membranes from oxidative injuries. Interaction with the membrane phospholipid bilayer, Biochim. Biophys. Acta, Biomembr., vol 1863, p. 183727.

  22. Lowry, O.H., Rosenberg, N.J., Farr, A.L., and Randall, R.J., Protein measurements with Folin-phenol reagent, J. Biol. Chem., 1951, vol. 193, pp. 364–375.

    Article  Google Scholar 

  23. Ma, L., Liu, Z., Zhou, B., Yang, L. and Liu, Z., Inhibition of free radical induced oxidative hemolysis of red blood cells by green tea polyphenols, Chin. Sci. Bull. 2000, vol. 45, pp. 2052–2056.

    Article  CAS  Google Scholar 

  24. Marcus, D.L., Thomas, C., Rodriguez, C., Simberkoff, K., Tsai, J.S., Strafaci, J.A., and Freedman, M.L., Increased peroxidation and reduced antioxidant enzyme activity in Alzheimer’s disease, Exp. Neurol., 1998, vol. 150, pp. 40–44.

    Article  CAS  PubMed  Google Scholar 

  25. Misra, H.P. and Fridovich, I., The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase, J. Biol. Chem., 1972, vol. 247, pp. 3170–3175.

    Article  CAS  PubMed  Google Scholar 

  26. Monte, D.D., Bellomo, G., Thor, H., Nicotera, P., Orrenius, S., Menadione-Induced Cytotoxicity is associated with protein thiol oxidation and alteration in intracellular Ca2+ homeostasis, Arch. Biochem. Biophys., 1984, vol. 235, pp. 343–350.

    Article  PubMed  Google Scholar 

  27. Nagababu, E., Chrest, F.J., and Rifkind, J.M., Hydrogen-peroxide-induced heme degradation in red blood cells: the protective roles of catalase and glutathione peroxidise, Biochim. Biophys. Acta, 2003, vol. 1620, pp. 211–217.

    Article  CAS  PubMed  Google Scholar 

  28. Naparło, K., Soszyński, M., Bartosz, G., and Sadowska-Bartosz, I., Comparison of antioxidants: the limited correlation between various assays of antioxidant activity, Molecules, 2020, vol. 25, p. 3244.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Niki, E., Free radical initiators as source of water-or lipid-soluble peroxyl radicals, Methods Enzymol., 1990, vol. 186, pp. 100–108.

    Article  CAS  PubMed  Google Scholar 

  30. O’Dell, B.L., Xia, J., and Browning, J.D., Decreased plasma membrane thiol concentration is associated with increased osmotic fragility of erythrocytes in zinc-deficient rats, J. Nutr., 1999, vol. 129, pp. 814–819.

    Article  PubMed  Google Scholar 

  31. Nuruki, Y., Matsumoto, H., Tsukada, M., Tsukahara, H., Takajo, T., Tsuchida, K., and Anzai, K., Method to Improve azo-compound (AAPH)-induced hemolysis of erythrocytes for assessing antioxidant activity of lipophilic compounds, Chem. Pharm. Bull., 2021, vol. 69, p. 67.

    Article  CAS  Google Scholar 

  32. Okamoto, K., Maruyama, T., Kaji, Y., Harada, M., Mawatari, S., Fujino, T., and Uyesaka, N., Verapamil prevents impairment in filterability of human erythrocytes exposed to oxidative stress, Jpn. J. Physiol., 2004, vol. 54, pp. 39–46.

    Article  CAS  PubMed  Google Scholar 

  33. Pandey, K.B. and Rizvi, S.I., Markers of oxidative stress in erythrocytes and plasma during aging in humans, Oxid. Med. Cell. Longev., 2010, vol. 3, pp. 2–12.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Powers, S.K. and Jackson, M.J., Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production, Physiol. Rev., 2008, vol. 88, pp. 1243–1276.

    Article  CAS  PubMed  Google Scholar 

  35. Quinde-Axtell, Z. and Baik, B.K., Phenolic compounds of barley grain and their implication in food product discoloration, J. Agric. Food Chem., 2006, vol. 54, pp. 9978–9984.

    Article  CAS  PubMed  Google Scholar 

  36. Radi, R., Turrens, J.F., Chang, L.Y., Bush, K.M., Crapo, J.D. and Freeman, B.A., Detection of catalase in rat heart mitochondria, J Biol. Chem., 1991, vol. 26, pp. 22028–22034.

    Article  Google Scholar 

  37. Rahman, K., Studies on free radicals, antioxidants, and co-factors, Clin. Interv. Aging, 2007, vol. 2, pp. 219–236.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Scalbert, A. and Williamson, G., Dietary intake and bioavailability of polyphenols, J. Nutr., 2000, vol. 130, pp. 2073S–2085S.

    Article  CAS  PubMed  Google Scholar 

  39. Senturk, U.K., Gunduz, F., Kuru, O., Aktekin, M.R., Kipmen, D., Yalcin, O., Kucukatay, M.B., Yesilkaya, A., and Baskurt, O.K., Exercise-induced oxidative stress affects erythrocyte in sedentary rats but not exercise-trained rats, J. Appl. Physiol., 2001, vol. 91, pp. 1999–2004.

    Article  CAS  PubMed  Google Scholar 

  40. Sivilotti, M.L., Oxidant stress and haemolysis of the human erythrocyte, Toxicol. Rev., 2004, vol. 23, pp. 169–188.

    Article  CAS  PubMed  Google Scholar 

  41. Šuran, J., Cepanec, I., Mašek, T., Radi’c, B., Radi’c, S., Tlak Gajger, I., and Vlaini’c, J., Propolis extract and its bioactive compounds—from traditional to modern extraction technologies, Molecules, 2021, vol. 26, p. 2930.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Vani, R., Shiva Shankar Reddy, C.S., and Asha, D., Oxidative stress in erythrocytes: a study on the effect of antioxidant mixtures during intermittent exposures to high altitude, Int. J. Biometeorol., 2010, vol. 54, pp. 553–562.

    Article  CAS  PubMed  Google Scholar 

  43. Vani, R., Koshy, A.A., Koushik, A.K., Kaur, H., Kumari, K., and Agrawal, M., The efficacy of erythrocytes isolated from blood stored under blood bank conditions, Transfus. Apher. Sci., 2012, vol. 47, pp. 359–364.

    Article  Google Scholar 

  44. Wang, G., Lei, Z., Zhong, Q., Wu, W., Zhang, H., Min, T., Wu, H., and Lai, F., Enrichment of caffeic acid in peanut sprouts and evaluation of its in vitro effectiveness against oxidative stress-induced erythrocyte hemolysis, Food Chem., 2017, vol. 217, pp. 332–341.

    Article  CAS  PubMed  Google Scholar 

  45. Witko, V., Nanyen, A.T., and Descaups Lotscha, B., Microtitre plate assay for phagocyte derived taurine chloramines, J. Clin. Lab. Anal., 1992, vol. 6, p. 47.

    Article  CAS  PubMed  Google Scholar 

  46. Witko-Sarsat, V., Friedlander, M., Nguyen Khoa, T., Capeillère-Blandin, C., Nguyen, A. T., Canteloup, S., Dayer, J.M., Jungers, P., Drüeke, T., and Descamps-Latscha, B., Advanced oxidation protein products as novel mediators of inflammation and monocyte activation in chronic renal failure, J. Immun., 1998, vol. 161, p. 2524–2532.

    Article  CAS  PubMed  Google Scholar 

  47. Wu, W., Lu, L., Long, Y., Wang, T., Liu, L., Chen, Q., and Wang, R., Free radical scavenging and antioxidative activities of caffeic acid phenethyl ester (CAPE) and its related compounds in solution and membranes: a structure–activity insight, Food Chem., 2007, vol. 105, pp. 107–115.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to acknowledge Dr. Leela Iyengar, Dr. Soumya Ravikumar, Dr. Manasa Mithun, Magdaline Christina Rajanand, and JAIN (Deemed-to-be University) for their support.

Funding

The authors received no specific funding for this study.

Author information

Authors and Affiliations

Authors

Contributions

Vani Rajashekaraiah: conceptualization, methodology, supervision, writing- reviewing and editing; Carl Hsieh, Masannagari Pallavi, Anagha Papinassery, Anu Sunny, Haripriya Gopinath, Prasad Varshith, Shreya Shriyan, Smita, Sneha Mathew, Tania Arora: investigation, data curation, formal analysis; Anusha Berikai Ananthakrishna: writing- original draft preparation, formal analysis.

Corresponding author

Correspondence to Vani Rajashekaraiah.

Ethics declarations

Conflict of interest. The authors report there are no conflicting interests to declare.

Statement on the welfare of animals. This study was performed in accordance with the guidelines of Institutional Ethics Committee.

Additional information

Abbreviations: AAPH—2,2-Azobis(2-amidinopropane) dihydrochloride; AOPP—advanced oxidation protein product; ARE—AU-rich elements; CA—controls with AAPH; CCA— controls with caffeic acid; CCAH—controls with caffeic acid and H2O2; CCO—controls with coumaric acid; CCOA—controls with coumaric acid and AAPH; CCOH—controls with coumaric acid and H2O2; CON—controls without any treatment; FRI—free radical initiators; Keap1—Kelch-like ECH-associated protein 1; Nrf2—nuclear factor erythroid 2–related factor 2; OS—oxidative stress; SOD—superoxide dismutase; TBARS—thiobarbituric acid reactive substances.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anusha Berikai Ananthakrishna, Hsieh, C., Pallavi, M. et al. Interactions of Free Radical Initiators and Antioxidants in Erythrocytes: An Ex Vivo Study. Cell Tiss. Biol. 17, 256–264 (2023). https://doi.org/10.1134/S1990519X23030033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X23030033

Keywords:

Navigation