Skip to main content

Reactive Oxygen Species and Cellular Defense System

  • Chapter
  • First Online:
Free Radicals in Human Health and Disease

Abstract

Reactive oxygen species (ROS) is a collective term used for oxygen-derived free radicals (superoxide, hydroxyl radical, nitric oxide) and non-radical oxygen derivatives of high reactivity (singlet oxygen, hydrogen peroxide, peroxynitrite, hypochlorite). ROS can be either harmful or beneficial to the body. An imbalance between formation and removal of free radicals can lead to a pathological condition called as oxidative stress. However, the human body employs molecules known as antioxidants to counteract these free radicals. But late several studies have indicated that antioxidants can also have deleterious effects on human health depending on dosage and bioavailability. This makes it essential to analyze the extent of utility of antioxidants in the improvement of human health. It is noteworthy that if the generation of free radicals exceeds the protective effects of antioxidants, this can cause oxidative damage which accumulates during the life cycle, and this has been implicated in aging and age-dependent diseases such as cardiovascular disease, cancer, neurodegenerative disorders, and other chronic conditions. This chapter highlights the main themes from studies on free radicals, antioxidants, and oxidative stress and effect of oxidative stress in diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sivanandham V (2011) Free radicals in health and diseases. Pharmacol Online 11:1062–1077

    Google Scholar 

  2. Tiwari AK (2004) Antioxidants: new- generation therapeutic base for treatment of polygenic disorders. Curr Sci 86:1092–1102

    CAS  Google Scholar 

  3. Shinde A, Ganu J, Naik P (2012) Effect of free radicals & antioxidants on oxidative stress. J Dent Allied Sci 1:63–66

    Google Scholar 

  4. Kunwar A, Priyadarsini KI (2011) Free radicals, oxidative stress and importance of antioxidants in human health. J Med Allied Sci 1:53–60

    Google Scholar 

  5. Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organisms. Physiol Rev 59:527–605

    CAS  PubMed  Google Scholar 

  6. De Groot H (1994) Reactive oxygen species in tissue injury. Hepatogastroenterology 41:328–332

    PubMed  Google Scholar 

  7. Nakazawa J, Genka C, Fujishima M (1996) Pathological aspects of active oxygens/free radicals. Hepatogastroenterology 46:15–32

    CAS  Google Scholar 

  8. Toykuni S (1999) Reactive oxygen species–induced molecular damage and its application in pathology. Pathol Int 49:91–102

    Article  Google Scholar 

  9. Aruoma OI (1994) Nutrition and health aspects of free radicals and antioxidants. Food Chem Toxicol 32:671–683

    Article  CAS  PubMed  Google Scholar 

  10. Proulx M, du Souich P (1995) Inflammation-induced decrease in hepatic cytochrome P450 in conscious rabbits is accompanied by an increase in hepatic oxidative stress. Res Commun Mol Pathol Pharmacol 87:221–236

    CAS  PubMed  Google Scholar 

  11. Cederbaum AI (2001) Introduction—serial review: alcohol, oxidative stress, and cell injury. Free Radic Biol Med 31:1524–1526

    Article  CAS  PubMed  Google Scholar 

  12. Lieber CS (1997) Cytochrome P450 2E1: its physiological and pathological role. Physiol Rev 77:517–544

    CAS  PubMed  Google Scholar 

  13. Sultatos LG (1988) Effects of acute ethanol administration on the hepatic xanthine dehydrogenase/xanthine oxidase system in the rat. J Pharmacol Exp Ther 246:946–949

    CAS  PubMed  Google Scholar 

  14. Rosen GM, Pou S, Ramos CL et al (1995) Free radicals and phagocytic cells. FASEB J 9:200–209

    CAS  PubMed  Google Scholar 

  15. Kohchi C, Inagawa H, Nishizawa T, Soma G (2009) ROS and innate immunity. Anticancer Res 29:817–821

    CAS  PubMed  Google Scholar 

  16. Klebanoff SJ (2005) Myeloperoxidase: friend and foe. J Leukoc Biol 77(5):598–625

    Article  CAS  PubMed  Google Scholar 

  17. Heinecke JW, Li W, Francis GA, Goldstein JA (1993) Tyrosyl radical generated by myeloperoxidase catalyzes the oxidative cross-linking of proteins. J Clin Invest 91(6):2866–2872

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. McCord JM (1988) Iron, free radicals, and oxidative injury. Semin Hematol 35:5–12

    Google Scholar 

  19. Tsukamoto H, Lu SC (2001) Current concepts in the pathogenesis of alcoholic liver injury. FASEB J 15:1335–1349

    Article  CAS  PubMed  Google Scholar 

  20. Sadrzadeh SM, Nanji AA, Price PL (1994) The oral iron chelator, 1,2– dimethyl–3–hydroxypyrid–4–one reduces hepatic free iron, lipid peroxidation and fat accumulation in chronically ethanol–fed rats. J Pharmacol Exp Ther 269:632–636

    CAS  PubMed  Google Scholar 

  21. Lian AP, Hua H, Chuong PH (2008) Free radicals, antioxidants in disease and health. Int J Biol Sci 4:89–96

    Google Scholar 

  22. Orrenius S, McConkey DJ, Bellomo G, Nicotera P (1989) Role of Ca2+ in toxic cell killing. Trends Pharmacol Sci 10:281–285

    Article  CAS  PubMed  Google Scholar 

  23. Zhivotovsky B, Orrenius S (2011) Calcium and cell death mechanisms: a perspective from the cell death community. Cell Calcium 50:211–221

    Article  CAS  PubMed  Google Scholar 

  24. Kohen R, Nyska A (2002) Oxidation of biological systems: oxidative stress and antioxidants. Toxicol Pathol 30:620–630

    Article  CAS  PubMed  Google Scholar 

  25. Sevanian A, Ursini F (2000) Lipid peroxidation in membranes and low-density lipoproteins: similarities and differences. Free Radic Biol Med 29:306–311

    Article  CAS  PubMed  Google Scholar 

  26. Mates JM (2000) Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology. Toxicology 153:83–104

    Article  CAS  PubMed  Google Scholar 

  27. Fridovich I (1997) Superoxide anion radical, superoxide dismutases, and related matters. J Biol Chem 272:18515–18517

    Article  CAS  PubMed  Google Scholar 

  28. Seifried HE, Anderson DE, Fisher EI, Milner JA (2007) A review of the interaction among the dietary antioxidants and reactive oxygen species. J Nutr Biochem 18:567–579

    Article  CAS  PubMed  Google Scholar 

  29. Schafer FQ, Buettner GR (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 30:1191–1212

    Article  CAS  PubMed  Google Scholar 

  30. Block G, Pattersen B, Subar A (1992) Fruit, vegetables and cancer prevention: a review of the epidemiological evidence. Nutr Cancer 18:1–29

    Article  CAS  PubMed  Google Scholar 

  31. Auroma OI (1998) Free radicals, oxidative stress, and antioxidants in human health and disease. JAOCS 75:199–212

    Google Scholar 

  32. Peake JM (2003) Vitamin C: effects of exercise and requirements with training. Int J Sports Nutr Exerc Metab 13:125–151

    CAS  Google Scholar 

  33. Hogg N, Kalyanaraman B (1999) Nitric oxide and lipid peroxidation. Biochim Biophys Acta 1411:378–384

    Article  CAS  PubMed  Google Scholar 

  34. Winterbourn CC (2008) Reconciling the chemistry and biology of reactive oxygen species. Nat Chem Biol 4:278–286

    Article  CAS  PubMed  Google Scholar 

  35. Beckman KB, Ames BN (1997) Oxidative decay of DNA. J Biol Chem 272:19633–19636

    Article  CAS  PubMed  Google Scholar 

  36. Wu D, Cederbaum AI (2004) Alcohol, oxidative stress and free radical damage. Alcohol Res Health 27(4):277–284

    Google Scholar 

  37. Spencer JPE, Jenner A, Aruoma OI, Cross CE et al (1996) Oxidative DNA damage in human respiratory tract epithelial cells. Time course in relation to DNA strand breakage. Biochem Biophys Res Commun 224:17–22

    Article  CAS  PubMed  Google Scholar 

  38. Breen AP, Murphy JA (1995) Reactions of oxyl radicals with DNA. Free Radic Biol Med 18:1033–1077

    Article  CAS  PubMed  Google Scholar 

  39. Lander HM (1997) An essential role for free radicals and derived species in signal transduction. FASEB J 11:118–124

    CAS  PubMed  Google Scholar 

  40. Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95

    CAS  PubMed  Google Scholar 

  41. Bedard K, Krause KH (2007) The Nox family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313

    Article  CAS  PubMed  Google Scholar 

  42. Jiang F, Zhang Y, Dusting GJ (2011) NADPH oxidase-mediated redox signaling: roles in cellular stress response, stress tolerance, and tissue repair. Pharmacol Rev 63:218–242

    Article  CAS  PubMed  Google Scholar 

  43. Fukai M (2006) Redox signaling in angiogenesis: role of NADPH oxidase. Cardiovasc Res 71:226–235

    Article  Google Scholar 

  44. Knight JA (1998) Free radicals: their history and current status in aging and disease. Ann Clin Lab Sci 28:331–346

    CAS  PubMed  Google Scholar 

  45. Schreck R, Baeuerle PA (1991) A role for oxygen radicals as second messengers. Trends Cell Biol 1:39–42

    Article  CAS  PubMed  Google Scholar 

  46. Kehrer JP (1993) Free radicals as mediators of tissue injury and disease. Crit Rev Toxicol 23:21–48

    Article  CAS  PubMed  Google Scholar 

  47. Diplock AT, Rice-Evans AC, Burton RY et al (1994) Is there a significant role of lipid peroxidation in the causation of malignancy and for antioxidants in cancer prevention? Cancer Res 54:19525–19565

    Google Scholar 

  48. Waris G, Ahsan H (2006) Reactive oxygen species: role in the development of cancer and various chronic conditions. J Carcinog 5:14

    Article  PubMed Central  PubMed  Google Scholar 

  49. Chapple IL (1997) Reactive oxygen species and antioxidants in inflammatory diseases. J Clin Periodontol 24:287–296

    Article  CAS  PubMed  Google Scholar 

  50. Li X, Fang P, Mai J, Choi ET et al (2013) Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers. J Hematol Oncol 25:6–19

    CAS  Google Scholar 

  51. Geronikaki AA, Gavalas AM (2006) Antioxidants and inflammatory disease: synthetic and natural antioxidants with anti-inflammatory activity. Comb Chem High Throughput Screen 9(6):425–442

    Article  CAS  PubMed  Google Scholar 

  52. Dhalla NS, Temsah RM, Netticadan T (2000) Role of oxidative stress in cardiovascular diseases. J Hypertens 18:655–673

    Article  CAS  PubMed  Google Scholar 

  53. Zhang N, Bradley TA, Zhang C (2010) Inflammation and reactive oxygen species in cardiovascular Disease. World J Cardiol 2:408–410

    Article  PubMed Central  PubMed  Google Scholar 

  54. Suzy A, Comhair A, Erzurum SC (2002) Antioxidant responses to oxidant- mediated lung diseases. Am J Physiol Lung Cell Mol Physiol 283:L246–L255

    Google Scholar 

  55. Johansen JS, Harris AK, Rychly DJ et al (2005) Oxidative stress and the use of antioxidants in Diabetes. Cardiovasc Diabetol 4:1–11

    Article  Google Scholar 

  56. Kaneto H, Katakami N, Matsuhisa M et al (2010) Role of reactive oxygen species in the progression of type 2 diabetes and atherosclerosis mediators of inflammation. Mediat Inflamm 2010:453892

    Article  Google Scholar 

  57. Makker K, Agarwal A, Sharma R (2009) Oxidative stress & male infertility. Indian J Med Res 129:357–367

    CAS  PubMed  Google Scholar 

  58. Miquel J, Economos AC, Fleming J et al (1980) Mitochondrial role in cell aging. Exp Gerontol 15:575–591

    Article  CAS  PubMed  Google Scholar 

  59. Afanas’ev I (2010) Signaling and damaging functions of free radicals in aging-free radical theory, hormesis, and TOR. Aging Dis 1:75–88

    PubMed Central  PubMed  Google Scholar 

  60. Pimentel C, Batista-Nascimento L, Rodrigues-Pousada C, Menezes RA (2012) Oxidative stress in Alzheimer’s and Parkinson’s diseases: insights from the yeast Saccharomyces cerevisiae. Oxidative Med Cell Longev 2012:1–9

    Article  Google Scholar 

  61. Gilgun-Sherki Y, Melamed E, Offen D (2001) Oxidative stress induced- neurodegenerative diseases: the need for antioxidants that penetrate the blood brain barrier. Neuropharmacology 40:959–975

    Article  CAS  PubMed  Google Scholar 

  62. Kohen R, Nyska A (2002) Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol Pathol 30:620–630

    Article  CAS  PubMed  Google Scholar 

  63. Willett WC, Macmahon B (1984) Diet and cancer-an overview. N Engl J Med 310:697–703

    Article  CAS  PubMed  Google Scholar 

  64. Willcox JK, Ash SL, Catignani GL (2004) Antioxidants and prevention of chronic disease. Crit Rev Food Sci Nutr 44:275–295

    Article  CAS  PubMed  Google Scholar 

  65. Radimer K, Bindewald B, Hughes J et al (2004) Dietary supplement use by US adults: data from the national health and nutrition examination survey, 1999–2000. Am J Epidemiol 160:339–349

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susinjan Bhattacharya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Bhattacharya, S. (2015). Reactive Oxygen Species and Cellular Defense System. In: Rani, V., Yadav, U. (eds) Free Radicals in Human Health and Disease. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2035-0_2

Download citation

Publish with us

Policies and ethics