Skip to main content
Log in

Interaction of Monomers in Near-Infrared Fluorescent Biomarkers

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

Here, we analyze how the inter-monomeric interaction in the near-infrared fluorescent boimarkers iRFP713 and iRFP713/C15S/V256C is affected by the rearrangement of the hydrogen bond network between the chromophore and the adjacent amino acids and bound water molecules as result of amino acid substitution of threonine at position 204 for alanine (T204A) in its local environment or replacement of natural ligand biliverdin with phycocyanobilin. Previously found allosteric inhibition of covalent binding of the biliverdin to a monomer of iRFP713/C15S/V256C after covalent binding of the chromophore to another monomer is markedly reduced in the protein with T204A substitution. There is no allosteric inhibition of covalent binding of phycocyanobilin to iRFP713/C15S/V256C, in contrast to the binding of biliverdin to this protein. Contrary, the replacement of biliverdin with phycocyanobilin in iRFP713 leads to increased allosteric inhibition of covalent chromophore binding. Our studies indicate that the change in the intramolecular contacts involving the chromophore and its protein environment in biomarkers caused by chromophore replacement or amino acid substitutions influences allosteric communication between monomers of the biomarker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Auldridge, M.E., Satyshur, K.A., Anstrom, D.M., and Forest, K.T., Structure-guided engineering enhances a phytochrome-based infrared fluorescent protein, J. Biol. Chem., 2012, vol. 287, p. 7000.

    Article  CAS  Google Scholar 

  2. Bhattacharya, S., Auldridge, M.E., Lehtivuori, H., Ihalainen, J.A., and Forest, K.T., Origins of fluorescence in evolved bacteriophytochromes, J. Biol. Chem., 2014, vol. 289, p. 32144.

    Article  CAS  Google Scholar 

  3. Buhrke, D., Velazquez, Escobar, F., Sauthof, L., Wilkening, S., Herder, N., Tavraz, N.N., Willoweit, M., Keidel, A., Utesch, T., Mroginski, M.A., Schmitt, F.J., Hildebrandt, P., and Friedrich, T., The role of local and remote amino acid substitutions for optimizing fluorescence in bacteriophytochromes: a case study on IRFP, Sci. Rep., 2016, vol. 6, p. 28444.

    Article  CAS  Google Scholar 

  4. Buhrke, D., Kuhlmann, U., Michael, N., and Hildebrandt, P., The photoconversion of phytochrome includes an unproductive shunt reaction pathway, ChemPhy-sChem, 2018, vol. 19, p. 566.

    Article  CAS  Google Scholar 

  5. Burgie, E.S., Zhang, J., and Vierstra, R.D., Crystal structure of deinococcus phytochrome in the photoactivated state reveals a cascade of structural rearrangements during photoconversion, Structure, 2016, vol. 24, p. 448.

    Article  CAS  Google Scholar 

  6. Burgie, E.S., Bussell, A.N., Lye, S.H., Wang, T., Hu, W., McLoughlin, K.E., Weber, E.L., Li, H., and Vierstra, R.D., Photosensing and thermosensing by phytochrome b require both proximal and distal allosteric features within the dimeric photoreceptor, Sci. Rep., 2017, vol. 7, p. 13648.

    Article  Google Scholar 

  7. Essen, L.O., Mailliet, J., and Hughes, J., The structure of a complete phytochrome sensory module in the Pr ground state, Proc. Natl. Acad. Sci. U. S. A., 2008, vol. 105, p. 14709.

    Article  CAS  Google Scholar 

  8. Filonov, G.S., Piatkevich, K.D., Ting, L.M., Zhang, J., Kim, K., and Verkhusha, V.V., Bright and stable near-infrared fluorescent protein for in vivo imaging, Nat. Biotechnol., 2011, vol. 29, p. 757.

    Article  CAS  Google Scholar 

  9. Fonin, A.V., Sulatskaya, A.I., Kuznetsova, I.M., and Turoverov, K.K., Fluorescence of dyes in solutions with high absorbance, inner filter effect correction, PLoS One, 2014, vol. 9. e103878. https://doi.org/10.1371/journal.pone.0103878

    Article  CAS  PubMed  Google Scholar 

  10. Frankenberg, N.F. and Lagarias, J.C., Biosynthesis and biological function of bilins, in The Porphyrin Handbook. Chlorophylls and Bilins: Biosynthesis Structure and Degradation, New York: Academic, 2003, vol. 13, p. 211.

    Google Scholar 

  11. Glazer, A.N. and Fang, S., Chromophore content of blue-green algal phycobiliproteins, J. Biol. Chem., 1973, vol. 248, p. 659.

    Article  CAS  Google Scholar 

  12. Gourinchas, G., Etzl, S., and Winkler, A., Bacteriophytochromes—from informative model systems of phytochrome function to powerful tools in cell biology, Curr. Opin. Struct. Biol., 2019, vol. 57, p. 72.

    Article  CAS  Google Scholar 

  13. Gourinchas, G., Heintz, U., and Winkler, A., Asymmetric activation mechanism of a homodimeric red light-regulated photoreceptor, Elife, 2018, vol. 7, p. 1.

    Article  Google Scholar 

  14. Hahn, J., Strauss, H.M., Landgraf, F.T., Gimenez, H.F., Lochnit, G., Schmieder, P., and Hughes, J., Probing protein-chromophore interactions in Cph1 phytochrome by mutagenesis, FEBS J., 2006, vol. 273, p. 1415.

    Article  CAS  Google Scholar 

  15. Rockwell, N.C., Martin, S.S., Li, F.W., Mathews, S., and Lagarias, J.C., The phycocyanobilin chromophore of streptophyte algal phytochromes is synthesized by HY2, New Phytol., 2017, vol. 214, p. 1145.

    Article  CAS  Google Scholar 

  16. Rodriguez, E.A., Campbell, R.E., Lin, J.Y., Lin, M.Z., Miyawaki, A., Palmer, A.E., Shu, X., Zhang, J., and Tsien, R.Y., The growing and glowing toolbox of fluorescent and photoactive proteins, Trends Biochem. Sci., 2017, vol. 42, p. 111.

    Article  CAS  Google Scholar 

  17. Rottwinkel, G., Oberpichler, I., and Lamparter, T., Bathy phytochromes in rhizobial soil bacteria, J. Bacteriol., 2010, vol. 192, p. 5124.

    Article  CAS  Google Scholar 

  18. Stepanenko, O.V., Baloban, M., Bublikov, G.S., Shcherbakova, D.M., Stepanenko, O.V., Turoverov, K.K., Kuznetsova, I.M., and Verkhusha, V.V., Allosteric effects of chromophore interaction with dimeric near-infrared fluorescent proteins engineered from bacterial phytochromes, Sci. Rep., 2016, vol. 6, p. 18750. https://doi.org/10.1038/srep18750

    Article  CAS  PubMed  Google Scholar 

  19. Stepanenko, O.V., Stepanenko, O.V., Kuznetsova, I.M., Shcherbakova, D.M., Verkhusha, V.V., and Turoverov, K.K., Interaction of biliverdin chromophore with near-infrared fluorescent protein Bphp1-fp engineered from bacterial phytochrome, Int. J. Mol. Sci., 2017, vol. 18, p. 1009.

    Article  Google Scholar 

  20. Stepanenko, O.V., Stepanenko, O.V., Shpironok, O.G., Fonin, A.V., Kuznetsova, I.M., and Turoverov, K.K., Near-infrared markers based on bacterial phytochromes with phycocyanobilin as a chromophore, Int. J. Mol. Sci., 2019, vol. 20, p. 6067.

    Article  CAS  Google Scholar 

  21. Stepanenko, O.V., Stepanenko, O.V., Turoverov, K.K., and Kuznetsova, I.M., Probing the allostery in dimeric near-infrared biomarkers derived from the bacterial phytochromes: the impact of the T204A substitution on the inter-monomer interaction, Int. J. Biol. Macromol., 2020, vol. 162, p. 894.

    Article  CAS  Google Scholar 

  22. Takala, H., Bjorling, A., Berntsson, O., Lehtivuori, H., Niebling, S., Hoernke, M., Kosheleva, I., Henning, R., Menzel, A., Ihalainen, J.A., and Westenhoff, S., Signal amplification and transduction in phytochrome photosensors, Nature, 2014, vol. 509, p. 245.

    Article  CAS  Google Scholar 

  23. Tarutina, M., Ryjenkov, D.A., and Gomelsky, M., An unorthodox bacteriophytochrome from rhodobacter sphaeroides involved in turnover of the second messenger C-di-GMP, J. Biol. Chem., 2006, vol. 281, p. 34751.

    Article  CAS  Google Scholar 

  24. Toh, K.C., Stojkovic, E.A., van, Stokkum, I.H., Moffat, K., and Kennis, J.T., Fluorescence quantum yield and photochemistry of bacteriophytochrome constructs, Phys. Chem. Chem. Phys., 2011, vol. 13, p. 11985.

    Article  CAS  Google Scholar 

  25. Velazquez Escobar, F., Hildebrandt, T., Utesch, T., Schmitt, F.J., Seuffert, I., Michael, N., Schulz, C., Mroginski, M.A., Friedrich, T., and Hildebrandt, P., Structural parameters controlling the fluorescence properties of phytochromes, Biochemistry, 2014, vol. 539, p. 20.

    Article  Google Scholar 

  26. Von Horsten, S., Strass, S., Hellwig, N., Gruth, V., Klasen, R., Mielcarek, A., Linne, U., Morgner, N., and Essen, L.O., Mapping light-driven conformational changes within the photosensory module of plant phytochrome B, Sci. Rep., 2016, vol. 6, p. 34366. https://doi.org/10.1038/srep34366

    Article  CAS  PubMed  Google Scholar 

  27. Yang, X., Stojkovic, E.A., Kuk, J., and Moffat, K., Crystal structure of the chromophore binding domain of an unusual bacteriophytochrome, RpBphP3, reveals residues that modulate photoconversion, Proc. Natl. Acad. Sci. U. S. A., 2007, vol. 104, p. 12571.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 16-04-01515-a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga V. Stepanenko.

Ethics declarations

The authors declare no conflict of interest.

This article does not contain any studies involving human participants and/or animals performed by any of the authors.

Additional information

Abbreviations: NIR biomarkers—near-infrared fluorescent biomarkers, BV—biliverdin, PCB—phycocyanobilin, GdnHCl— guanidine hydrochloride.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stepanenko, O.V., Stepanenko, O.V. Interaction of Monomers in Near-Infrared Fluorescent Biomarkers. Cell Tiss. Biol. 15, 310–315 (2021). https://doi.org/10.1134/S1990519X21030123

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X21030123

Keywords:

Navigation