Skip to main content
Log in

Assessment of the Level of Rage in Cells Blood-Brain Barrier in Experimental Alzheimer’s Disease

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

Alzheimer’s – disease is a progressive neurodegenerative disorder in which the accumulation of β‑amyloid and neurofibrillary tangles is a determining pathological sign. Activation of RAGE plays a decisive role in the production and aggregation of β-amyloid, formation of neurofibrillary tangles and degeneration of neurons. The aim of this work is to assess the influence of RAGE and its ligands—β-amyloid (Aβ1-42) on endothelial cells of cerebral microvascular in model blood-brain barrier (BBB) in vitro with experimental Alzheimer’s disease. Modeling of experimental Alzheimer’s disease in vitro caused a significant (P ≤ 0.05) increase expression of RAGE on endothelial cells and decrease in the transendothelial electric resistance (TEER) in both the static and dynamic models BBB. However, suppressed expression of RAGE led to a persistent and long-term increase value of TEER. In this case, the ligand RAGE-Ab1-42 caused reduced parameters of TEER. Alzheimer’s disease is accompanied by pathological changes in the expression of RAGE on endothelial cells, thereby leading to altered structural and functional integrity of the BBB. Blocking the RAGE expression in cerebral endothelial cells inhibits development of endothelial dysfunction and restores integrity of BBB impaired by the action of β-amyloid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Arancio, O., Zhang, H.P., Chen, X., Lin, C., Trinchese, F., Puzzo, D., Liu, S., Hegde, A., Yan, F.S., Stern, A., Luddy, J.S., Lue, L.-F., Walker, D.G., Roher, A., Buttini, M., et al., RAGE potentiates abeta-induced perturbation of neuronal function in transgenic mice, EMBO J., 2004, vol. 23, p. 4096. https://doi.org/10.1038/sj.emboj.7600415

    Article  CAS  PubMed  Google Scholar 

  2. Bell, R.D., Sagare, A.P., Friedman, A.E., Bedi, G.S., Holtzman, D.M., Deane, R., and Zlokovic, B.V., Transport pathways for clearance of human Alzheimer’s amyloid beta-peptide and apolipoproteins E and J in the mouse central nervous system, J. Cereb. Blood Flow Metab., 2007, vol. 27, p. 909. https://doi.org/10.1038/sj.jcbfm.9600419

    Article  CAS  PubMed  Google Scholar 

  3. Bloom, G.S., Amyloid-β and tau: the trigger and bullet in Alzheimer disease pathogenesis, JAMA Neurol., 2014, vol. 71, p. 505. https://doi.org/10.1001/jamaneurol.2013.5847

    Article  PubMed  Google Scholar 

  4. Chen, Y.G., Research progress in the pathogenesis of Alzheimer’s disease, Chin. Med. J. (Engl)., 2018, vol. 131, p. 624. https://doi.org/10.4103/0366-6999.235112

  5. Criscuolo, C., Fontebasso, V., Middei, S., Stazi, M., Ammassari-Teule, M., Yan, S.S., and Origlia, N., Entorhinal cortex dysfunction can be rescued by inhibition of microglial rage in an Alzheimer’s disease mouse model, Sci. Rep., 2017, vol. 7, p. 42370. https://doi.org/10.1038/srep42370

  6. Deane, R., Wu, Z., and Zlokovic, B.V., RAGE (yin) versus LRP (yang) balance regulates Alzheimer amyloid beta-peptide clearance through transport across the blood-brain barrier, Stroke, 2004, vol. 35, p. 2628. https://doi.org/10.1161/01.STR.0000143452.85382.d1

  7. Donahue, J.E., Flaherty, S.L., Johanson, C.E., Duncan, J.A., Silverberg, G.D., Miller, M.C., Tavares, R., Yang, W., Wu, Q., Sabo, E., Hovanesian, V., and Stopa, E.G., RAGE, LRP-1, and amyloid-beta protein in Alzheimer’s disease, Acta Neuropathol., 2006, vol. 112, p. 405. https://doi.org/10.1007/s00401-006-0115-3

    Article  CAS  PubMed  Google Scholar 

  8. Fang, F., Lue, L.-F., Yan, S., Xu, H., Luddy, J.S., Chen, D., Walker, D.G., Stern, D.M., Yan, S., Schmidt, A.M., Chen, J.X., and Yan, S.S., RAGE-dependent signaling in microglia contributes to neuroinflammation, abeta accumulation, and impaired learning/memory in a mouse model of Alzheimer’s disease, FASEB J., 2010, vol. 24, p. 1043. https://doi.org/10.1096/fj.09-139634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. García-Cabezas, M.Á., John, Y.J., Barbas, H., and Zikopoulos, B., Distinction of neurons, glia and endothelial cells in the cerebral cortex: an algorithm based on cytological features, Front. Neuroanat., 2016, vol. 10, p. 107. https://doi.org/10.3389/fnana.2016.00107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gool, B.V., Storck, S.E., Reekmans, S.M., Lechat, B., Gordts, P.L.S.M., Pradier, L., Pietrzik, C.U., and Roebroek, A.J.M., LRP1 has a predominant role in production over clearance of Aβ in a mouse model of Alzheimer’s disease, Mol. Neurobiol., 2019, vol. 56, p. 7234. https://doi.org/10.1007/s12035-019-1594-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Goustard-Langelier, B., Koch, M., Lavialle, M., and Heberden, C., Rat neural stem cell proliferation and differentiation are durably altered by the in utero polyunsaturated fatty acid supply, J. Nutr. Biochem., 2012, vol. 24, p. 380. https://doi.org/10.1016/j.jnutbio.2012.08.001

    Article  CAS  PubMed  Google Scholar 

  12. Guo, Y.-X., He, L.-Y., Zhang, M., Wang, F., Liu, F., and Peng, W.-X., 1,25-Dihydroxyvitamin D3 regulates expression of LRP1 and RAGE in vitro and in vivo, enhancing Aβ1-40 brain-to-blood efflux and peripheral uptake transport, Neuroscience, 2016, vol. 322, p. 28. https://doi.org/10.1016/j.neuroscience.2016.01.041

    Article  CAS  PubMed  Google Scholar 

  13. Jedlitschky, G., Grube, M., Mosyagin, I., Kroemer, H.K., and Vogelgesang, S., Targeting CNS transporters for treatment of neurodegenerative diseases, Curr. Pharm. Des., 2014, vol. 20, p. 1523. https://doi.org/10.2174/13816128113199990460

    Article  CAS  PubMed  Google Scholar 

  14. Jeong, S., Molecular and cellular basis of neurodegeneration in Alzheimer’s disease, Mol. Cells, 2017, vol. 40, p. 613. https://doi.org/10.14348/molcells.2017.0096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kook, S.-Y., Hong, H.S., Moon, M., Ha, C.M., Chang, S., and Mook-Jung, I., Aβ1−42-RAGE interaction disrupts tight junctions of the blood-brain barrier via Ca2+-calcineurin signaling, J. Neurosci., 2012, vol. 32, p. 8845. https://doi.org/10.1523/JNEUROSCI.6102-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu, Y., Xue, Q., Tang, Q., Hou, M., Qi, H., Chen, G., Chen, W., Zhang, J., Chen, Y., and Xu, X., A simple method for isolating and culturing the rat brain microvascular endothelial cells, Microvasc. Res., 2013, vol. 90, p. 199. https://doi.org/10.1016/j.mvr.2013.08.004

    Article  CAS  PubMed  Google Scholar 

  17. Lue, L.F., Walker, D.G., Brachova, L., Beach, T.G., Rogers, J., Schmidt, A.M., Stern, D.M., and Yan, S.D., Involvement of microglial receptor for advanced glycation endproducts (RAGE) in Alzheimer’s disease: identification of a cellular activation mechanism, Exp. Neurol., 2001, vol. 1, p. 29. https://doi.org/10.1006/exnr.2001.7732

    Article  CAS  Google Scholar 

  18. Miller, M.C., Tavares, R., Johanson, C.E., Hovanesian, V., Donahue, J.E., Gonzalez, L., Silverberg, G.D., and Stopa, E.G., Hippocampal RAGE immunoreactivity in early and advanced Alzheimer’s disease, Brain Res., 2008, vol. 1230, p. 273. https://doi.org/10.1016/j.brainres.2008.06.124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mohamed, L.A., Zhu, H., Mousa, Y.M., Wang, E., Qiu, W.Q., and Kaddoumi, A., Amylin enhances amyloid‑β peptide brain to blood efflux across the blood-brain barrier, J. Alzheimers Dis., 2017, vol. 56, p. 1087. https://doi.org/10.3233/JAD-160800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Morgun, A.V., Kuvacheva, N.V., Komleva, Yu.K., Kutishcheva, I.A., Okuneva, O.S., Drobushevskaya, A.I., Khilazheva, E.D., Cherepanov, S.M., and Salmina, A.B., Differentiation of rat brain embryonic progenitor cells into astrocytes and neurons, Sib. Med. Obozr., 2013, no. 6, p. 9.

  21. Nan, K., Han, Y., Fang, Q., Huang, C., Yu, L., Ge, W., Xiang, F., Tao, Y.-X., Cao, H., and Li, J., HMGB1 gene silencing inhibits neuroinflammation via down-regulation of NF-κB signaling in primary hippocampal neurons induced by Aβ 25-35, Int. Immunopharmacol., 2019, vol. 67, p. 294. https://doi.org/10.1016/j.intimp.2018.12.027

    Article  CAS  PubMed  Google Scholar 

  22. Oh, S., Son, M., Choi, J., Lee, S., and Byun, K., SRAGE prolonged stem cell survival and suppressed RAGE-related inflammatory cell and T lymphocyte accumulations in an Alzheimer’s disease model, Biochem. Biophys. Res. Commun., 2018, vol. 495, p. 807. https://doi.org/10.1016/j.bbrc.2017.11.035

    Article  CAS  PubMed  Google Scholar 

  23. Origlia, N., Arancio, O., Domenici, L., and Yan, S.S., beta-Amyloid and synaptic dysfunction: the role of RAGE affiliations expand, Expert Rev. Neurother., 2009, vol. 9, p. 1635. https://doi.org/10.1586/ern.09.107

    Article  CAS  PubMed  Google Scholar 

  24. Qosa, H., Abuasal, B.S., Romero, I.A., Weksler, B., Couraud, P.-O., Keller, J.N., and Kaddoumi, A., Differences in amyloid-β clearance across mouse and human blood-brain barrier models: kinetic analysis and mechanistic modeling, Neuropharmacology, 2014, vol. 79, p. 668. https://doi.org/10.1016/j.neuropharm.2014.01.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sengupta, U., Nilson, A.N., and Kayed, R., The role of amyloid-β oligomers in toxicity, propagation, and immunotherapy, EBioMedicine, 2016, vol. 6, p. 42. https://doi.org/10.1016/j.ebiom.2016.03.035

    Article  PubMed  Google Scholar 

  26. Takeuchi, M., Sato, T., Takino, J., Kobayashi, Y., Furuno, S., Kikuchi, S., and Yamagishi, S., Diagnostic utility of serum or cerebrospinal fluid levels of toxic advanced glycation end-products (TAGE) in early detection of Alzheimer’s disease, Med. Hypotheses, 2007, vol. 69, p. 1358. https://doi.org/10.1016/j.mehy.2006.12.017

    Article  CAS  PubMed  Google Scholar 

  27. Tóbon-Velasco, J.C., Cuevas, E., and Torres-Ramos, M.A., Receptor for ages (rage) as mediator of NF-kb pathway activation in neuroinflammation and oxidative stress, CNS Neurol. Disord. Drug Targets, 2014, vol. 13, p. 1615. https://doi.org/10.2174/1871527313666140806144831

    Article  CAS  PubMed  Google Scholar 

  28. Ueno, M., Chiba, Y., Matsumoto, K., Nakagawa, T., and Miyanaka, H., Clearance of beta-amyloid in the brain, Curr. Med. Chem., 2014, vol. 21, p. 4085. https://doi.org/10.2174/0929867321666141011194256

    Article  CAS  PubMed  Google Scholar 

  29. Uspenskaya, Yu.A., Komleva, Yu.K., Pozhilenkova, E.A., Salmin, V.V., Lopatina, O.L., Fursov, A.A., Lavrent’ev, P.V., Belova, O.A., and Salmina, A.B., RAGE protein ligands: role in cellular communication and inflammation pathogenesis, Vestn. Russ. Akad. Med. Nauk, 2015, vol. 70, no. 6, p. 704.

    Article  Google Scholar 

  30. Wan, W., Cao, L., Liu, L., Zhang, C., Kalionis, B., Tai, X., Li, Y., and Xia, S., Aβ(1–42) oligomer-induced leakage in an in vitro blood-brain barrier model is associated with up-regulation of RAGE and metalloproteinases, and down-regulation of tight junction scaffold proteins, J. Neurochem., 2015, vol. 134, p. 382. https://doi.org/10.1111/jnc.13122

    Article  CAS  PubMed  Google Scholar 

  31. Welikovitch, L.A., Carmo, S.D., Maglóczky, Z., Szocsics, P., Lőke, J., Freund, T., and Cuello, A.C., Evidence of intraneuronal Aβ accumulation preceding tau pathology in the entorhinal cortex, Acta Neuropathol., 2018, vol. 136, p. 901. https://doi.org/10.1007/s00401-018-1922-z

    Article  CAS  PubMed  Google Scholar 

  32. Yamada, K., Hashimoto, T., Yabuki, C., Nagae, Y., Tachikawa, M., Strickland, D.K., Liu, Q., Bu, G., Basak, J.M., Holtzman, D.M., Ohtsuki, S., Terasaki, T., and Iwatsubo, T., The low density lipoprotein receptor-related protein 1 mediates uptake of amyloid beta peptides in an in vitro model of the blood-brain barrier cells, J. Biol. Chem., 2008, vol. 283, p. 34554. https://doi.org/10.1074/jbc.M801487200

    Article  CAS  PubMed  Google Scholar 

  33. Yamamoto, Y., Liang, M., Munesue, S., Deguchi, K., Harashima, A., Furuhara, K., Yuhi, T., Zhong, J., Akther, S., Goto, H., Eguchi, Y., Kitao, Y., Hori, O., Shiraishi, Y., and Ozaki, N.et, al., Vascular RAGE transports oxytocin into the brain to elicit its maternal bonding behaviour in mice, Commun. Biol., 2019, vol. 2, p. 76. https://doi.org/10.1038/s42003-019-0325-6

    Article  PubMed  Google Scholar 

  34. Yu, Q.C., Song, W., Wang, D., and Zeng, Y.A., Identification of blood vascular endothelial stem cells by the expression of protein C receptor, Cell Res., 2016, vol. 26, p. 1079. https://doi.org/10.1038/cr.2016.85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was financially supported by the Program of the President of the Russian Federation for State Support of Leading Scientific Schools of the Russian Federation (S-S-2547.2020.7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya. V. Gorina.

Ethics declarations

Conflict of interest. The authors declare no obvious and potential conflicts of interest related to the publication of this article.

Statement on the welfare of animals. The work with animals was carried out in compliance with the principles of humanity, which are set out in the European Community Directive (2010/63/EC). The experiments were carried out with the permission of the Bioethical Commission for Working with Animals at the Local Ethics Committee of the Krasnoyarsk State Medical University named after prof. V.F. Voino-Yasenetsky (Excerpt from the protocol no. 7 dated February 11, 2019).

Additional information

Abbreviations: AD—Alzheimer’s disease; BBB—blood-brain barrier; TEER—trans endothelial electrical resistance; LRP1— low density lipoprotein receptor-related protein 1 (protein 1, similar to the low density lipoprotein receptor); Aβ1-42—β-amyloid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorina, Y.V., Osipova, E.D., Morgun, A.V. et al. Assessment of the Level of Rage in Cells Blood-Brain Barrier in Experimental Alzheimer’s Disease. Cell Tiss. Biol. 15, 280–286 (2021). https://doi.org/10.1134/S1990519X21030032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X21030032

Keywords:

Navigation