Skip to main content
Log in

The Role of Different NO Synthase Isoforms in the Regulatory Effect of Prolactin and Growth Hormone on the State of Chromosomes in Mature Oocytes Aging in vitro

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

The fertility of female mammals depends on the quality of oocytes, which decreases in the process of biological aging. We found an inhibitory effect of two related pituitary hormones (prolactin (PRL) and growth hormone (GH)) on destructive modifications of metaphase chromosomes in the eggs of domestic cow (Bos taurus taurus), aging in vitro. The involvement of different NO synthase (NOS) isoforms in realization of the effect of PRL and GH on age-related changes of MII chromosomes with prolonged cultivation of in vitro matured cow oocytes was studied in the present work. In the absence of hormones NPLA, neuronal NOS (nNOS) inhibitor had no effect on the frequency of chromosomal abnormalities in aging oocytes. At the same time, 1400 W (inducible NOS (iNOS) inhibitor) and L-NAME (efficient endothelial NOS (eNOS and nNOS ) inhibitor) decreased this frequency, while the blocking of all three NO synthase isoforms led to the opposite effect. The inhibitory effect of PRL on destructive chromosome modifications in aging eggs increased in the presence of L-NAME, but was not expressed with the inhibition of nNOS, iNOS, or all NO synthase isoforms simultaneously. Neither NPLA nor L-NAME modulated the inhibitory effect of GH on abnormal chromosome changes in oocytes. On the contrary, the blocking of iNOS, as well as all three NO synthase isoforms, led to an increase in the portion of oocytes with destructive changes of MII chromosomes. At the same time, the level of total activity of NO synthase in oocytes did not depend on the presence of the studied hormones or NOS inhibitors during the prolonged cultivation of oocyte–cumulus complexes. Data obtained suggest that the inhibitory effect of PRL and GH on abnormal changes of metaphase chromosomes in aging cow eggs is associated with a decrease in the activity of endothelial NO synthase, as well as (in the case of PRL) with an increase in the activity of neuronal NO synthase in the cumulus cells surrounding the oocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Al-Edani, T., Assou, S., Ferrières, A., Bringer, Deutsch, S., Gala, A., Lecellier, C.H., Aït-Ahmed, O., and Hamamah, S., Female aging alters expression of human cumulus cells genes that are essential for oocyte quality, Biomed. Res. Int., 2014, vol. 2014, pp. 964614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Basini, G., Baratta, M., Ponderato, N., Bussolati, S., and Tamanini, C., Is nitric oxide an autocrine modulator of bovine granulosa cell function?, Reprod., Fertil. Dev., 1998, vol. 10, pp. 471–478.

    Article  CAS  Google Scholar 

  3. Basini, G., Baioni, L., Bussolati, S., Grolli, S., and Grasselli, F., Prolactin is a potential physiological modulator of swine ovarian follicle function, Regul. Pept., 2014, vol. 189, pp. 22–30.

    Article  CAS  PubMed  Google Scholar 

  4. Basini, G. and Grasselli, F., Nitric oxide in follicle development and oocyte competence, Reproduction, 2015, vol. 150, pp. R1–R9.

    Article  CAS  PubMed  Google Scholar 

  5. Battaglia, D.E., Goodwin, P., Klein, N.A., and Soules, M.R., Influence of maternal age on meiotic spindle assembly in oocytes from naturally cycling women, Hum. Reprod., 1996, vol. 11, pp. 2217–2222.

    Article  CAS  PubMed  Google Scholar 

  6. Broekmans, F.J., Soules, M.R., and Fauser, B.C., Ovarian aging: mechanisms and clinical consequences, Endocrinol. Rev., 2009, vol. 30, pp. 465–493.

    Article  CAS  Google Scholar 

  7. Cecconi, S., Rossi, G., Deldar, H., Cellini, V., Patacchiola, F., Carta, G., Macchiarelli, G., and Canipari, R., Post-ovulatory ageing of mouse oocytes affects the distribution of specific spindle-associated proteins and Akt expression levels, Reprod., Fertil. Dev., 2014, vol. 26, pp. 562–569.

    Article  CAS  Google Scholar 

  8. Chmelíková, E., Jeseta, M., Sedmíková, M., Petr, J., Tůmová, L., Kott, T., Lipovová, P., and Jílek, F., Nitric oxide synthase isoforms and the effect of their inhibition on meiotic maturation of porcine oocytes, Zygote, 2010, vol. 18, pp. 235–244.

    Article  CAS  PubMed  Google Scholar 

  9. Drew, B. and Leeuwenburgh, C., Aging and the role of reactive nitrogen species, Ann. N.Y. Acad. Sci., 2002, vol. 959, pp. 66–81.

    Article  CAS  PubMed  Google Scholar 

  10. Dubey, P.K., Tripathi, V., Singh, R.P., Saikumar, G., Nath, A., Pratheesh, Gade, N., and Sharma, G.T., Expression of nitric oxide synthase isoforms in different stages of buffalo (Bubalus bubalis) ovarian follicles: effect of nitric oxide on in vitro development of preantral follicle, Theriogenology, 2012, vol. 77, pp. 280–291.

    Article  CAS  PubMed  Google Scholar 

  11. Duckles, S.P. and Miller, V.M., Hormonal modulation of endothelial NO production, Pflugers Arch., 2010, vol. 459, pp. 841–851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Egecioglu, E., Andersson, I.J., Bollano, E., Palsdottir, V., Gabrielsson, B.G., Kopchick, J.J., Skott, O., Bie, P., Isgaard, J., BohloolyY.M., Bergström, G., and Wickman, A., Growth hormone receptor deficiency in mice results in reduced systolic blood pressure and plasma renin, increased aortic eNOS expression, and altered cardiovascular structure and function, Am. J. Physiol. Endocrinol. Metab., 2007, vol. 292, pp. E1418–E1425.

    Article  CAS  PubMed  Google Scholar 

  13. Eichenlaub-Ritter, U., Vogt, E., Yin, H., and Gosden, R., Spindles, mitochondria and redox potential in ageing oocytes, Reprod. Biomed. Online, 2004, vol. 8, pp. 45–58.

    Article  CAS  PubMed  Google Scholar 

  14. Gilchrist, R.B., Lane, M., and Thompson, J.G., Oocyte-secreted Factors: Regulators of Cumulus cell Function and Oocyte Quality, Hum. Reprod. Update, 2008, vol. 14, pp. 159–177.

    Article  CAS  PubMed  Google Scholar 

  15. Goud, A.P., Goud, P.T., Diamond, M.P., and Abu-Soud, H.M., Nitric Oxide delays oocyte aging, Biochemistry, 2005, vol. 44, pp. 11 361–11 368.

  16. Goud, P.T., Goud, A.P., Diamond, M.P., Gonik, B., and Abu-Soud, H.M., Nitric oxide extends the oocyte temporal window for optimal fertilization, Free Radic. Biol. Med., 2008, vol. 45, pp. 453–459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Goud, P.T., Goud, A.P., Najafi, T., Gonik, B., Diamond, M.P., Saed, G.M., Zhang, X., and Abu-Soud, H.M., Direct real-time measurement of intra-oocyte nitric oxide concentration in vivo, PLoS One, 2014, vol. 9. e98720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gutiérrez, C.G., Campbell, B.K., Armstrong, D.G., and Webb, R., Insulin-like growth factor-I (IGF-I) production by bovine granulosa cells in vitro and peripheral IGF-I measurement in cattle serum: an evaluation of IGF-binding protein extraction protocols, J. Endocrinol., 1997, vol. 153, pp. 231–240.

    Article  PubMed  Google Scholar 

  19. Hattori, M. and Tabata, S., Nitric oxide and ovarian function, Anim. Sci. J., 2006, vol. 77, pp. 275–284.

    Article  CAS  Google Scholar 

  20. Homa, S.T., Effects of cyclic AMP on the spontaneous meiotic maturation of cumulus-free bovine oocytes cultured in chemically defined medium, J. Exp. Zool., 1988, vol. 248, pp. 222–231.

    Article  CAS  PubMed  Google Scholar 

  21. Lebedeva, I.Yu., Kibardina, T.V., and Kuz’mina, T.I., Participation of granulosa cells in mediation of prolactin and somatotropin action on bovine oocyte-cumulus complexes in vitro, Tsitologiia, 2005, vol. 47, no. 10, pp. 882–888.

    CAS  PubMed  Google Scholar 

  22. Lebedeva, I.Yu., Singina, G.N., Ernst, L.K., and Golubev, A.K., Realization pathways of prolactin modulating effect on the cAMP-dependent mechanism of meiosis regulation in bovine oocytes, Cell Tissue Biol., 2009, vol. 3, pp. 438–444.

    Article  Google Scholar 

  23. Lebedeva, I.Yu., Singina, G.N., Lopukhov, A.V., and Zinovieva, N.A., Dynamics of morphofunctional changes in aging bovine ova during prolonged culture in vitro, Cell Tissue Biol., 2014, vol. 8, pp. 258–266.

    Article  Google Scholar 

  24. Lebedeva, I.Y., Singina, G.N., Lopukhov, A.V., Shedova, E.N., and Zinovieva, N.A., Prolactin and growth hormone affect metaphase-II chromosomes in aging oocytes via cumulus cells using similar signaling pathways, Front. Genet., 2015, vol. 6, pp. 274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liang, X., Ma, J., Schatten, H., and Sun, Q., Epigenetic changes associated with oocyte aging, Sci. China Life Sci., 2012, vol. 55, pp. 670–676.

    Article  CAS  PubMed  Google Scholar 

  26. McGinnis, L.K., Pelech, S., and Kinsey, W.H., Post-ovulatory aging of oocytes disrupts kinase signaling pathways and lysosome biogenesis, Mol. Reprod. Dev., 2014, vol. 81, pp. 928–945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Miao, Y.L., Kikuchi, K., Sun, Q.Y., and Schatten, H., Oocyte aging: cellular and molecular changes, developmental potential and reversal possibility, Hum. Reprod. Update, 2009, vol. 15, pp. 573–585.

    Article  PubMed  Google Scholar 

  28. Nakamura, Y., Yamagata, Y., Sugino, N., Takayama, H., and Kato, H., Nitric oxide inhibits oocyte meiotic maturation, Biol. Reprod., 2002, vol. 67, pp. 1588–1592.

    Article  CAS  PubMed  Google Scholar 

  29. Nevoral, J., Krejčová, T., Petr, J., Melicharová, P., Vyskočilová, A., Dvořáková, M., Weingartová, I., Chmelíková, E., Tůmová, L., Hošková, K., Kučerová-Chrpová, V., and Sedmíková, M., The role of nitric oxide synthase isoforms in aged porcine oocytes, Czech J. Anim. Sci., 2013, vol. 58, pp. 453–459.

    Article  Google Scholar 

  30. Nishikimi, A., Matsukawa, T., Hoshino, K., Ikeda, S., Kira, Y., Sato, E.F., Inoue, M., and Yamada, M., Localization of nitric oxide synthase activity in unfertilized oocytes and fertilized embryos during preimplantation development in mice, Reproduction, 2001, vol. 122, pp. 957–963.

    Article  CAS  PubMed  Google Scholar 

  31. Pandey, A.N., Tripathi, A., Premkumar, K.V., Shrivastav, T.G., and Chaube, S.K., Reactive oxygen and nitrogen species during meiotic resumption from diplotene arrest in mammalian oocytes, J. Cell. Biochem., 2010, vol. 111, pp. 521–528.

    Article  CAS  PubMed  Google Scholar 

  32. Petr, J., Krejčová, M., Rajmon, R., and Jílek, F., Activation of protein kinase C suppresses fragmentation of pig oocytes aged in vitro, Animal, 2011, vol. 5, pp. 565–571.

    Article  CAS  PubMed  Google Scholar 

  33. Pires, P.R., Santos, N.P., Adona, P.R., Natori, M.M., Schwarz, K.R., de Bem, T. H., and Leal, C.L., Endothelial and inducible nitric oxide synthases in oocytes of cattle, Anim. Reprod. Sci., 2009, vol. 116, pp. 233–243.

    Article  CAS  PubMed  Google Scholar 

  34. Premkumar, K.V. and Chaube, S.K., Nitric oxide signals postovulatory aging-induced abortive spontaneous egg activation in rats, Redox Rep., 2015, vol. 20, pp. 184–192.

    Article  CAS  PubMed  Google Scholar 

  35. Secondo, A., Sirabella, R., Formisano, L., D’Alessio, A., Castaldo, P., Amoroso, S., Ingleton, P., Di, Renzo, G., and Annunziato, L., Involvement of PI3'-K, mitogen-activated protein kinase and protein kinase B in the up-regulation of the expression of NNOSalpha and NNOSbeta splicing variants induced by PRL-receptor activation in GH3 cells, J. Neurochem., 2003, vol. 84, pp. 1367–1377.

    Article  CAS  PubMed  Google Scholar 

  36. Takahashi, T., Igarashi, H., Kawagoe, J., Amita, M., Hara, S., and Kurachi, H., Poor embryo development in mouse oocytes aged in vitro is associated with impaired calcium homeostasis, Biol. Reprod., 2009, vol. 80, pp. 493–502.

    Article  CAS  PubMed  Google Scholar 

  37. Tanghe, S., Van Soom, A., Nauwynck, H., Coryn, M., and de Kruif, A., Minireview: functions of the cumulus oophorus during oocyte maturation, ovulation, and fertilization, Mol. Reprod. Dev., 2002, vol. 61, pp. 414–424.

    Article  CAS  PubMed  Google Scholar 

  38. Tatone, C., Carbone, M.C., Gallo, R., Delle, Monache, S., Di, Cola, M., Alesse, E., and Amicarelli, F., Age-associated changes in mouse oocytes during postovulatory in vitro culture: possible role for meiotic kinases and survival factor BCL2, Biol. Reprod., 2006, vol. 74, pp. 395–402.

    Article  CAS  PubMed  Google Scholar 

  39. Tatone, C., Amicarelli, F., Carbone, M.C., Monteleone, P., Caserta, D., Marci, R., Artini, P.G., Piomboni, P., and Focarelli, R., Cellular and molecular aspects of ovarian follicle ageing, Hum. Reprod. Update, 2008, vol. 14, pp. 131–142.

    Article  CAS  PubMed  Google Scholar 

  40. Te Velde, E.R. and Pearson, P.L., The variability of female reproductive ageing, Hum. Reprod. Update, 2002, vol. 8, pp. 141–154.

    Article  PubMed  Google Scholar 

  41. Tian, X.C., Lonergan, P., Jeong, B.S., Evans, A.C., and Yang, X., Association of MPF, MAPK, and nuclear progression dynamics during activation of young and aged bovine oocytes, Mol. Reprod. Dev., 2002, vol. 62, pp. 132–138.

    Article  CAS  PubMed  Google Scholar 

  42. Vega, C., Moreno-Carranza, B., Zamorano, M., Quintanar-Stéphano, A., Méndez, I., Thebault, S., Martínez, de la Escalera, G., and Clapp, C., Prolactin promotes oxytocin and vasopressin release by activating neuronal nitric oxide synthase in the supraoptic and paraventricular nuclei, Am. J. Physiol. Regul. Integr. Comp. Physiol., 2010, vol. 299, pp. R1701–R1708.

    Article  CAS  PubMed  Google Scholar 

  43. Wu, Y., Wang, X.L., Liu, J.H., Bao, Z.J., Tang, D.W., Wu, Y., and Zeng, S.M., BIM EL-mediated apoptosis in cumulus cells contributes to degenerative changes in aged porcine oocytes via a paracrine action, Theriogenology, 2011, vol. 76, pp. 1487–1495.

    Article  CAS  PubMed  Google Scholar 

  44. Zhang, G.M., Gu, C.H., Zhang, Y.L., Sun, H.Y., Qian, W.P., Zhou, Z.R., Wan, Y. J., Jia, R.X., Wang, L.Z., and Wang, F., Age-associated changes in gene expression of goat oocytes, Theriogenology, 2013, vol. 80, pp. 328–336.

    Article  CAS  PubMed  Google Scholar 

  45. Zhu, J., Zhang, J., Li, H., Wang, T.Y., Zhang, C.X., Luo, M.J., and Tan, J.H., Cumulus cells accelerate oocyte aging by releasing soluble Fas ligand in mice, Sci. Rep., 2015, vol. 5, p. 8683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Yu. Lebedeva.

Additional information

Translated by A. Barkhash

   Abbreviations: GH—growth hormone, LH—luteinizing hormone, MII—metaphase II, OCC—oocyte–cumulus complexes, PRL—prolactin, cu—conventional units, FBS—fetal bovine serum, FSH—follicle-stimulating hormone, eNOS—endothelial NOS, iNOS—inducible NOS, L-NAME—N(omega)-nitro-L-arginine methyl ester hydrochloride, L-NIO—N5-(1-iminoethyl)-L-ornithine dihydrochloride, nNOS—neuronal NOS, NOS—NO synthase, NPLA—N-propyl-L-arginine, 1400W—N-([3-(aminomethyl)phenyl]methyl)ethanimidamide dihydrochloride, β-NADPH—nicotinamide-β-adenine dinucleotide phosphate.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lebedeva, I.Y., Singina, G.N., Shedova, E.N. et al. The Role of Different NO Synthase Isoforms in the Regulatory Effect of Prolactin and Growth Hormone on the State of Chromosomes in Mature Oocytes Aging in vitro. Cell Tiss. Biol. 13, 219–227 (2019). https://doi.org/10.1134/S1990519X19030076

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X19030076

Keywords:

Navigation