Skip to main content
Log in

Quantification of mitochondrial morphology in situ

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

The structural organization of mitochondria reflects their functional status and largely is an index of cell viability. The indirect parameter to assess the functional state of mitochondria in cells is the degree of their fragmentation, i.e., the ratio of long or branched mitochondrial structures to round mitochondria. Such evaluations requires an approach that allows to create an integral pattern of the three-dimensional organization of mitochondrial reticulum using confocal images of mitochondria stained with a fluorescent probe. In the present study, we tested three approaches to analyzing the structural architecture of mitochondria under normal conditions and fission induced by oxidative stress. We revealed that, while the most informative is a three-dimensional reconstruction based on series of confocal images taken along the Z-dimension, with some restrictions it is plausible to use more simple algorithms of analysis, including one that uses unitary twodimensional images. Further improvement of these methods of image analysis will allow more comprehensive study of mitochondrial architecture under normal conditions and different pathological states. It may also provide quantification of a number of mitochondrial parameters determining the morphofunctional state of mitochondria—primarily, their absolute and relative volumes—and give additional information on threedimensional organization of the mitochondrion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

IR:

ischemia–reoxygenation

SkQ1:

10-(6′-plasto-quinonyl) decyltriphenylphosphonium

TMRE:

tetramethylrhodamine ethyl ester

References

  • Bakeeva, L.E., Barskov, I.V., Egorov, M.V., Isaev, N.K., Kapelko, V.I., Kazachenko, A.V., Kirpatovskii, V.I., Kozlovsky, S.V., Lakomkin, V.L., Levina, S.V., Pisarenko, O.I., Plotnikov, Yu.P., Saprunova, V.B., Serebryakova, L.I., Skulachev, M.V., Stelmashook, E.V., Studneva, I.M., Tskitishvili, O.V., Vasilieva, A.K., Viktorov, I.V., Zorov, D.B., and Skulachev, V.P., Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 2. Treatment of some ROS- and agerelated diseases (heart arrhythmia, heart infarctions, kidney ischemia, and stroke), Biochemistry (Moscow), 2008, vol. 73, no. 12, pp. 1288–1299.

    Article  CAS  Google Scholar 

  • Bakeeva, L.E., Chentsov, Y.S., and Skulachev, V.P., Mitochondrial framework (reticulum mitochondriale) in rat diaphragm muscle, Biochim. Biophys. Acta—Bioenergetics, 1978, vol. 501, pp. 349–369.

    Article  CAS  Google Scholar 

  • Benek, O., Aitken, L., Hroch, L., Kuca, K., Gunn-Moore, F., and Musilek, K., A direct interaction between mitochondrial proteins and amyloid-beta peptide and its significance for the progression and treatment of Alzheimer’s disease, Curr. Med. Chem., 2015, vol. 22, pp. 1056–1085.

    Article  CAS  Google Scholar 

  • Bolte, S. and Cordelires, F.P., A guided tour into subcellular colocalization analysis in light microscopy, J. Micr., 2006, vol. 224, pp. 213–232.

    Article  CAS  Google Scholar 

  • Cenini, G. and Voos, W., Role of mitochondrial protein quality control in oxidative stress-induced neurodegenerative diseases, Curr. Alzheimer Res., 2016, vol. 13, pp. 164–173.

    Article  CAS  PubMed  Google Scholar 

  • Chan, D.C., Mitochondrial fusion and fission in mammals, Ann. Rev. Cell Dev. Biol., 2006, vol. 22, pp. 79–99.

    Article  CAS  Google Scholar 

  • Frederic, J. and Chevremont, M., Recherches sur les chondriosomes de cellules vivantes par la microscopie et la microcinematographie en contraste de phase (1re partie), Arch. Biol. (Liege), 1952, vol. 63, pp. 109–131.

    CAS  Google Scholar 

  • Friedland-Leuner, K., Stockburger, C., Denzer, I., Eckert, G.P., and Müller, W.E., Mitochondrial dysfunction: cause and consequence of Alzheimer’s disease, Progr. Mol. Biol.Transl. Sci., 2014, vol. 127, pp. 183–210.

    Article  CAS  Google Scholar 

  • Herbert, S., Ortmann, W., Lautenschl, J., Marco, K., Grosskreutz, J., and Denzler, J., Quantitative analysis of pathological mitochondrial morphology in neuronal cells in confocal laser scanning microscopy images, Proceedings IWBBIO, 2014, vol. 2014, pp. 1290–1301.

    Google Scholar 

  • Lautenschlager, J., Lautenschlager, C., Tadic, V., Sube, H., Ortmann, W., Denzler, J., and Grosskreutz, J., Novel computer vision algorithm for the reliable analysis of organelle morphology in whole cell 3D images—a pilot study for the quantitative evaluation of mitochondrial fragmentation in amyotrophic lateral sclerosis, Mitochondrion, 2015, vol. 25, pp. 49–59.

    Article  PubMed  Google Scholar 

  • Ollion, J., Cochennec, J., Loll, F., scudé, C., and Boudier, T., TANGO: a generic tool for high-throughput 3D image analysis for studying nuclear organization, Bioinformatics (Oxford, England), 2013, vol. 29, pp. 1840–1841.

    Article  CAS  Google Scholar 

  • Picone, P., Nuzzo, D., Caruana, L., Scafidi, V., and Di Carlo, M., Mitochondrial dysfunction: different routes to Alzheimer’s disease therapy, Oxidative Med. Cell. Longevity, 2014. doi 10.1155/2014/780179

    Google Scholar 

  • Plotnikov, E.Y., Kazachenko, A.V., Vyssokikh, M.Y., Vasileva, A.K., Tcvirkun, D.V., Isaev, N.K., and Zorov, D.B., The role of mitochondria in oxidative and nitrosative stress during ischemia/reperfusion in the rat kidney, Kidney Int., 2007, vol. 72, pp. 1493–1502.

    Article  CAS  PubMed  Google Scholar 

  • Plotnikov, E.Y., Vasileva, A.K., Arkhangelskaya, A.A., Pevzner, I.B., Skulachev, V.P., and Zorov, D.B., Interrelations of mitochondrial fragmentation and cell death under ischemia/reoxygenation and UV-irradiation: protective effects of SkQ1, lithium ions and insulin, FEBS Lett., 2008, vol. 582, pp. 3117–3124.

    Article  CAS  PubMed  Google Scholar 

  • Poliakova, I.A., Zorov, D.B., and Leikina, M.I., Structure–activity changes of mitochondria from cultured cells upon disruption of energy metabolism, Dokl. Akad. Nauk, 1995, vol. 342, no. 4, pp. 553–555.

    CAS  PubMed  Google Scholar 

  • Silachev, D.N., Zorova, L.D., Usatikova, E.A., Pevzner, I.B., Babenko, V.A., Gulyaev, M.V., Pirogov, Yu.A., Antonenlo, Yu.N., Plotnikov, E.Y., and Zorov, D.B., Mitochondria as a target for neuroprotection, Biol. Membr., 2015, vol. 32, no. 5–6, pp. 388–398.

    CAS  Google Scholar 

  • Skulachev, V.P., Bakeeva, L.E., Chernyak, B.V., Domnina, L.V., Minin, A.A., Pletjushkina, O.Y., and Zorov, D.B., Thread-grain transition of mitochondrial reticulum as a step of mitoptosis and apoptosis, Mol. Cell. Biochem., 2004, vols. 256–257, pp. 341–358.

    Article  PubMed  Google Scholar 

  • Smith, R.A. and Ord, M.J., Mitochondrial form and function relationships in vivo: their potential in toxicology and pathology, Int. Rev. Cytol., 1983, vol. 83, pp. 63–134.

    Article  CAS  PubMed  Google Scholar 

  • Vorobjev, I.A. and Zorov, D.B., Diazepam inhibits cell respiration and induces fragmentation of mitochondrial reticulum, FEBS Lett., 1983, vol. 163, pp. 311–314.

    Article  CAS  PubMed  Google Scholar 

  • Wang, X., Wang, W., Li, L., Perry, G., Lee, H., and Zhu, X., Oxidative stress and mitochondrial dysfunction in Alzheimer’s disease, Biochim. Biophys. Acta. Mol. Basis Disease, 2014, vol. 1842, pp. 1240–1247.

    Article  CAS  Google Scholar 

  • Zorov, D.B., Krasnikov, B.F., Kuzminova, A.E., Vysokikh, M.Y., and Zorova, L.D., Mitochondria revisited, alternative functions of mitochondria. Biosci. Rep., 1997, vol. 17, pp. 507–520.

    Article  CAS  PubMed  Google Scholar 

  • Zorov, D.B., Isaev, N.K., Plotnikov, E.Y., Silachev, D.N., Zorova, L.D., Pevzner, I.B., Morosanova, M.A., Jankauskas, S.S., Zorov, S.D., and Babenko, V.A., Perspectives of mitochondrial medicine, Biochemistry (Moscow), 2013, vol. 78, no. 9, pp. 979–990.

    Article  CAS  Google Scholar 

  • Zorov, D.B., Vorobjev, I.A., Plotnikov, E.Y., Silachev, D.N., Zorova, L.D., Pevzner, I.B., Babenko, V.A., Zorov, S.D., Jankauskas, S.S., and Popkov, V.A., Specific issues of mitochondrial fragmentation (fission). Partial problems, Biol. Membr., 2015, vol. 32, nos. 5–6, pp. 338–345.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. B. Zorov.

Additional information

Original Russian Text © V.A. Popkov, E.Yu. Plotnikov, L.D. Zorova, I.B. Pevzner, D.N. Silachev, V.A. Babenko, S.S. Jankauskas, S.D. Zorov, D.B. Zorov, 2016, published in Tsitologiya, 2016, Vol. 58, No. 9, pp. 699–706.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popkov, V.A., Plotnikov, E.Y., Zorova, L.D. et al. Quantification of mitochondrial morphology in situ. Cell Tiss. Biol. 11, 51–58 (2017). https://doi.org/10.1134/S1990519X17010096

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X17010096

Keywords

Navigation