Skip to main content

Mito-SinCe2 Approach to Analyze Mitochondrial Structure–Function Relationship in Single Cells

  • Protocol
  • First Online:
Mitochondrial Medicine

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2275))

Abstract

The cross talk between mitochondrial dynamic structure, determined primarily by mitochondrial fission and fusion events, and mitochondrial function of energetics, primarily ATP and ROS production, is widely appreciated. Understanding the mechanistic details of such cross talk between mitochondrial structure and function needs integrated quantitative analyses between mitochondrial dynamics and energetics. Here we describe our recently designed approach of mito-SinCe2 that involves high resolution confocal microscopy of genetically expressed ratiometric fluorescent probes targeted to mitochondria, and its quantitative analyses. Mito-SinCe2 analyses allows for quantitative analyses of mitochondrial structure–function relationship in single cells toward understanding the role of mitochondria and their heterogeneity in various physiological and pathological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harwig MC, Viana MP, Egner JM, Harwig JJ, Widlansky ME, Rafelski SM, Hill RB (2018) Methods for imaging mammalian mitochondrial morphology: A prospective on MitoGraph. Anal Biochem 552:81–99. https://doi.org/10.1016/j.ab.2018.02.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Iannetti EF, Smeitink JA, Beyrath J, Willems PH, Koopman WJ (2016) Multiplexed high-content analysis of mitochondrial morphofunction using live-cell microscopy. Nat Protoc 11(9):1693–1710. https://doi.org/10.1038/nprot.2016.094

    Article  CAS  PubMed  Google Scholar 

  3. Karbowski M, Cleland MM, Roelofs BA (2014) Photoactivatable green fluorescent protein-based visualization and quantification of mitochondrial fusion and mitochondrial network complexity in living cells. Methods Enzymol 547:57–73. https://doi.org/10.1016/B978-0-12-801415-8.00004-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mitra K, Wunder C, Roysam B, Lin G, Lippincott-Schwartz J (2009) A hyperfused mitochondrial state achieved at G1-S regulates cyclin E buildup and entry into S phase. Proc Natl Acad Sci U S A 106(29):11960–11965. https://doi.org/10.1073/pnas.0904875106

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ouellet M, Guillebaud G, Gervais V, Lupien St-Pierre D, Germain M (2017) A novel algorithm identifies stress-induced alterations in mitochondrial connectivity and inner membrane structure from confocal images. PLoS Comput Biol 13(6):e1005612. https://doi.org/10.1371/journal.pcbi.1005612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Parker DJ, Moran A, Mitra K (2017) Studying mitochondrial structure and function in drosophila ovaries. J Vis Exp (119):e54989. https://doi.org/10.3791/54989

  7. Spurlock B, Gupta P, Basu MK, Mukherjee A, Hjelmeland AB, Darley-Usmar V, Parker D, Foxall ME, Mitra K (2019) New quantitative approach reveals heterogeneity in mitochondrial structure-function relations in tumor-initiating cells. J Cell Sci 132(9):jcs230755. https://doi.org/10.1242/jcs.230755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nakano M, Imamura H, Nagai T, Noji H (2011) Ca(2)(+) regulation of mitochondrial ATP synthesis visualized at the single cell level. ACS Chem Biol 6(7):709–715. https://doi.org/10.1021/cb100313n

    Article  CAS  PubMed  Google Scholar 

  9. Vevea JD, Alessi Wolken DM, Swayne TC, White AB, Pon LA. (2013) Ratiometric biosensors that measure mitochondrial redox state and ATP in living yeast cells. J Vis Exp (77):50633. https://doi.org/10.3791/50633

  10. Waypa GB, Marks JD, Guzy R, Mungai PT, Schriewer J, Dokic D, Schumacker PT (2010) Hypoxia triggers subcellular compartmental redox signaling in vascular smooth muscle cells. Circ Res 106(3):526–535. https://doi.org/10.1161/CIRCRESAHA.109.206334

    Article  CAS  PubMed  Google Scholar 

  11. Beretta CA, Dross N, Engel U, Carl M (2016) Tracking cells in GFP-transgenic zebrafish using the photoconvertible PSmOrange system. J Vis Exp (108):e53604. https://doi.org/10.3791/53604

  12. Pletnev S, Shcherbakova DM, Subach OM, Pletneva NV, Malashkevich VN, Almo SC, Dauter Z, Verkhusha VV (2014) Orange fluorescent proteins: structural studies of LSSmOrange, PSmOrange and PSmOrange2. PLoS One 9(6):e99136. https://doi.org/10.1371/journal.pone.0099136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Subach OM, Patterson GH, Ting LM, Wang Y, Condeelis JS, Verkhusha VV (2011) A photoswitchable orange-to-far-red fluorescent protein, PSmOrange. Nat Methods 8(9):771–777. https://doi.org/10.1038/nmeth.1664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Viana MP, Lim S, Rafelski SM (2015) Quantifying mitochondrial content in living cells. Methods Cell Biol 125:77–93. https://doi.org/10.1016/bs.mcb.2014.10.003

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge Drs. S. Rafelski and M. Vienna for developing the MitoGraph v2.1 software and for help with accessing and understanding its capabilities; Dr. P. Gupta for helping to develop the MitoSinCe2 approach in its earliest stages; D. Parker for performing some of the experiments from which we took example data; and J. Wirth for the custom-built Excel macro. This work was supported by the National Institutes of Health (NIH) [R33ES025662] grant to B.S. and K.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Mitra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Spurlock, B., Mitra, K. (2021). Mito-SinCe2 Approach to Analyze Mitochondrial Structure–Function Relationship in Single Cells. In: Weissig, V., Edeas, M. (eds) Mitochondrial Medicine . Methods in Molecular Biology, vol 2275. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1262-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1262-0_27

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1261-3

  • Online ISBN: 978-1-0716-1262-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics