Skip to main content
Log in

Matrix metalloproteinase activity in transformed cells exposed to an antioxidant

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

We showed that antioxidant N-acetylcysteine (NAC, 2–10 mM) rapidly (in 2 h) and completely deactivated the activity of matrix metalloproteinases (MMPs) (MMP-2 and MMP-9 gelatinases and MMP-1 and MMP-8 collagenases) secreted by transformed 3T3-SV40 mouse fibroblasts into the medium. The same MMP inhibition took place in the cell-free medium conditioned by HT-1080 fibroblasts. This suggests that the direct chemical interaction between NAC and MMP resulted in the loss of MMP activity. In addition to this inhibitory effect, NAC decreased MMP-1 and MMP-9 (but not MMP-2) production in the cell medium. However, the level of MMP-1 and MMP-9 inhibitors (TIMP-1) remained normal, indicating a shift in the balance between the enzyme and inhibitor. The correlation between MMP-2 and the tissue enzyme inhibitor TIMP-2 level was similar in control and NAC-treated cells. Moreover, reorganization of collagen type I at the cell surface was observed. Taken together, our results suggest that NAC exposure results in extracellular matrix remodeling and a change in cellular functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albini, A., D’Agostini, F., Giunciuglio, D., Paglieri, I., Balansky, R., and De Flora, S., Inhibition of invasion, gelatinase activity, tumor take and metastasis of malignant cells by N-acetylcysteine, Int. J. Cancer., 1995, vol. 61, pp. 121–129.

    Article  CAS  PubMed  Google Scholar 

  • Ardi, V.C., Kupriyanova, T.A., Deryugina, E.I., and Quigley, J.P., Human neutrophils uniquely release TIMP-free MMP-9 to provide a potent catalytic stimulator of angiogenesis, Proc. Natl. Acad. Sci. USA, 2007, vol. 104, no. 51. doi-10.1073-pnas.0706438104

    Google Scholar 

  • Baker, A.H., Edwards, D.R., and Murphy, G., Metalloproteinase inhibitors: biological actions and therapeutic opportunities, J. Cell Sci., 2002, vol. 115, pp. 3719–3727.

    Article  CAS  PubMed  Google Scholar 

  • Björklund, M. and Koivunen, E., Gelatinase-mediated migration and invasion of cancer cells, Biochim. Biophys. Acta, 2005, vol. 1755, pp. 37–69.

    PubMed  Google Scholar 

  • Bogani, P., Canavesi, M., Hagen, T.M., Visioli, F., and Bellosta, S., Thiol supplementation inhibits metalloproteinase activity independent of glutathione status, Biochem. Biophys. Res. Commun., 2007, vol. 363, pp. 651–655.

    Article  CAS  PubMed  Google Scholar 

  • Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 1976, vol. 72, pp. 248–254.

    Article  CAS  PubMed  Google Scholar 

  • Candelario-Jali, E., Yang, Y., and Rosenberg, G.A., Diverse roles of matrix metalloproteinases and tissue inhibitors of metalloproteinases in neuroinflammation and cerebral ischemia, Neuroscience, 2009, vol. 158, pp. 983–994.

    Article  Google Scholar 

  • Cavdar, Z., Ozbal, S., Celik, A., Ergur, B., Guneli, E., Ural, C., Camsari, T., and Guner, G., The effects of alphalipoic acid on MMP-2 and MMP-9 activities in a rat renal ischemia and re-perfusion model, Biotech. Histochem., 2013, vol. 89, pp. 304–314.

    Article  PubMed  Google Scholar 

  • Curry, T.E. and Osteen, K.G., The matrix metalloproteinase system: changes, regulation, and impact throughout the ovarian and uterine reproductive cycle, Endocr. Rev., 2003, vol. 24, pp. 428–465.

    Article  CAS  PubMed  Google Scholar 

  • Dooley, A., Shi-Wen, X., Aden, N., Tranah, T., Desai, N., Denton, C.P., Abraham, D.J., and Bruckdorfer, R., Modulation of collagen type I, fibronectin and dermal fibroblast function and activity, in systemic sclerosis by the antioxidant epigallocatechin-3-gallate, Rheumatology (Oxford), 2010, vol. 49, pp. 2024–2036.

    Article  CAS  Google Scholar 

  • Dzwonek, J., Rylski, M., and Kaczmarek, L., Matrix metalloproteinases and their endogenous inhibitors in neuronal physiology of the adult brain, FEBS Lett., 2004, vol. 567, pp. 129–135.

    Article  CAS  PubMed  Google Scholar 

  • Filatova, N.A., Kirpichnikova, K.M., Vakhromova, E.A., and Gamaley, I.A., Effect of alpha-lipoic acid on the sensitivity of transformed fibroblasts to lysis by natural killer cells. Comparison with NAC action, Tsitologiia, 2009, vol. 51, no. 5, pp. 398–402.

    CAS  PubMed  Google Scholar 

  • Fisher, G.J., Quan, T., Purohit, T., Shao, Y., Cho, M.K., He, T., Varani, J., Kang, S., and Voorhees, J.J., Collagen fragmentation promotes oxidative stress and elevates matrix metalloproteinase-1 in fibroblasts in aged human skin, Am. J. Pathol., 2009, vol. 174, pp. 101–114.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Galis, Z.S., Asanuma, K., Godin, D., and Meng, X., N-acetyl-cysteine decreases the matrix-degrading capacity of macrophage-derived foam cells. New target for antioxidant therapy?, Circulation, 1998, vol. 97, pp. 2445–2453.

    Article  CAS  PubMed  Google Scholar 

  • Gamaley, I., Efremova, T., Kirpichnikova, K., Kever, L., Komissarchik, Y., Polozov, Yu., and Khaitlina, S., N-acetylcysteine-induced changes in susceptibility of transformed eukaryotic cells to bacterial invasion, Cell Biol. Int., 2006, vol. 30, pp. 319–325.

    Article  CAS  PubMed  Google Scholar 

  • Gamaley, I.A., Kirpichnikova, K.M., Vakhromova, E.A., and Filatova, N.A., N-acethylcysteine reduces susceptibility of transformed and embryonic cells to lytic activity of natural killer cells, Cell Tissue Biol., 2010, vol. 4, no. 6, pp. 580–586.

    Article  Google Scholar 

  • Henry, M.T., McMahon, K., Mackarel, A.J., Prikk, K., Sorsa, T., Maisi, P., Sepper, R., FitzGerald, M.X., and O’Connor, C.M., Matrix metalloproteinases and tissue inhibitor of metalloproteinase-1 in sarcoidosis and IPF, Eur. Respir. J., 2002, vol. 20, pp. 1220–1227.

    Article  CAS  PubMed  Google Scholar 

  • Kolkenbrock, H., Orgel, D., Hecker-Kia, A., Noack, W., and Ulbrich, N., The complex between a tissue inhibitor of metalloproteinases (TIMP-2) and 72-kDa progelatinase is a metalloproteinase inhibitor, Eur. J. Biochem., 1991, vol. 198, pp. 775–781.

    Article  CAS  PubMed  Google Scholar 

  • Kolkenbrock, H., Hecker-Kia, A., Orgel, D., Ruppitsch, W., and Ulbrich, N., Activity of ternary gelatinase A-TIMP-2-matrix metalloproteinase complexes, Biol. Chem. Hoppe-Seyler, 1994, vol. 375, pp. 589–596.

    Article  CAS  PubMed  Google Scholar 

  • Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 1970, vol. 227, pp. 680–683.

    Article  CAS  PubMed  Google Scholar 

  • Lai, C.F., Seshadri, V., Huang, K., Shao, J.S., Cai, J., Vattikuti, R., Schumacher, A., Loewy, A.P., Denhardt, D.T., Rittling, S.R., and Towler, D.A., An osteopontin-NADPH oxidase signaling cascade promotes pro-matrix metalloproteinase 9 activation in aortic mesenchymal cells, Circ. Res., 2006, vol. 98, pp. 1479–1489.

    Article  CAS  PubMed  Google Scholar 

  • Lappas, M., Permezel, M., and Rice, G., N-acetylcysteine inhibits phospholipid metabolism, proinflammatory cytokine release, protease activity, and nuclear factor κb deoxyribonucleic acid-binding activity in human fetal membranes in vitro, J. Clin. Endocrinol. Metabol., 2003, vol. 88, pp. 1723–1729.

    Article  CAS  Google Scholar 

  • Lee, H.S., Na, M.H., and Kim, W.K., Alpha-lipoic acid reduces matrix metalloproteinase activity in MDA-MB-231 human breast cancer cells, Nutr. Res., 2010, vol. 30, pp. 403–409.

    Article  CAS  PubMed  Google Scholar 

  • Mautino, G., Henriquet, C., Gougat, C., Le, Cam, A., Dayer, J.M., Bousquet, J., and Capony, F., Increased expression of tissue inhibitor of metalloproteinase-1 and loss of correlation with matrix metalloproteinase-9 by macrophages in asthma, Lab. Invest., 1999, vol. 79, pp. 39–47.

    CAS  PubMed  Google Scholar 

  • Monea, S., Lehti, K., Keski-Oja, J., and Mignatti, P., Plasmin activates pro-matrix metalloproteinase-2 with a membrane-type 1 matrix metalloproteinase-dependent mechanism, J. Cell Physiol., 2002, vol. 192, pp. 160–170.

    Article  CAS  PubMed  Google Scholar 

  • Morini, M., Cai, T., Aluigi, M.G., Noonan, D.M., Masiello, L., De, Flora, S., D’Agostini, F., Albini, A., and Fassina, G., The role of the thiol N-acetylcysteine in the prevention of tumor invasion and angiogenesis, Int. J. Biol. Markers, 1999, vol. 14, pp. 68–71.

    Google Scholar 

  • Oliver, G.W., Stettler-Stevenson, W.G., and Kleiner, D.E., Zymography, casein zymography and reverse zymography: activity assays for proteases and their inhibitors, in Handbook of Proteolytic Enzymes, San Diego: Acad. Press., 1999, vol. 61–76.

    Google Scholar 

  • Parasassi, T., Brunelli, R., Costa, G., De, Spirito, M., Krasnowsk, E.K.S., Lundeberg, T., Pittaluga, E., and Ursini, F., Thiol redox transitions in cell signaling: a lesson from N-acetylcysteine, Scientific World J., 2010, vol. 10, pp. 1192–1202.

    Article  CAS  Google Scholar 

  • Pei, P., Horan, M.P., Hille, R., Hemann, C.F., Schwendeman, S.P., and Mallery, S.R., Reduced nonprotein thiols inhibit activation and function of MMP-9: implications for chemoprevention, Free Rad. Biol. Med., 2006, vol. 41, pp. 1315–1324.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Radomska-Leoeniewska, D.M, Skopiñska-Rózewska, E., Jankowska-Steifer, E., Sobiecka, M., Sadowska, A.M., Hevelke, A., and Malejczyk, J., N-acetylcysteine inhibits IL-8 and MMP-9 release and ICAM-1 expression by bronchoalveolar cells from interstitial lung disease patients, Pharmacol. Rep., 2010, vol. 62, pp. 131–138.

    Article  Google Scholar 

  • Sadowska, A.M., Manuel-Y-Keenoy, B., and De Backer, W.A., Antioxidant and anti-inflammatory efficacy of NAC in the treatment of COPD: discordant in vitro and in vivo dose-effects: a review, Pulm. Pharmacol. Ther., 2007, vol. 20, pp. 9–22.

    Article  CAS  PubMed  Google Scholar 

  • Shackelford, R.E., Heinloth, A.N., Heard, S., and Paules, R.S., Cellular and molecular targets of protein S-glutathiolation, Antioxid. Redox Signaling, 2005, vol. 7, pp. 940–950.

    Article  CAS  Google Scholar 

  • Spingman, E.B., Angleton, E.L., Birkedal-Hansen, H., and Van Wart, H.E., Multiple modes of activation of latent human fibroblast collagenase: evidence for the role of a Cys73 active-site zinc complex in latency and a “cysteine switch” mechanism for activation, Proc. Natl. Acad. Sci. USA, 1990, vol. 87, pp. 364–368.

    Article  Google Scholar 

  • Svineng, G., Ravuri, C., Rikardsen, O., Huseby, N.-F., and Winberg, J.-O., The role of reactive oxygen species in integrin and matrix metalloproteinase, Connect Tissue Res., 2008, vol. 49, pp. 197–202.

    Article  CAS  PubMed  Google Scholar 

  • Toth, M., Sohail, A., and Fridman, R., Assessment of gelatinases (MMP-2 and MMP-9) by gelatin zymography, Methods Mol. Biol., 2012, vol. 878, pp. 121–135.

    Article  CAS  PubMed  Google Scholar 

  • Tyagi, S.C., Kumar, S., and Borders, S., Reduction-oxidation (redox) state regulation of extracellular matrix metalloproteinases and tissue inhibitors in cardiac normal and transformed fibroblast cells, J. Cell Biochem., 1996, vol. 61, pp. 139–151.

    Article  PubMed  Google Scholar 

  • Van Wart, H.E. and Birkedal-Hansen, H., The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family, Proc. Natl. Acad. Sci. USA, 1990, vol. 87, pp. 5578–5582.

    Article  PubMed Central  PubMed  Google Scholar 

  • Vayalil, P.K., Olman, M., Mutphy-Ulrich, J.E., Postlethwait, E.M., and Liu, R.-M., Glutathione restores collagen degradation in TGF-β-treated fibroblasts by blocking plasminogen activator inhibitor-1 expression and activating plasminogen, Am. J. Physiol. Lung Cell Mol. Physiol., 2005, vol. 289, pp. L937–L945.

    Article  CAS  PubMed  Google Scholar 

  • Voronkina, I.V., Kirpichnikova, K.M., Smagina, L.V., and Gamaley, I.A.., Activity of matrix metalloproteinases in normal and transformed mouse fibroblasts exposed to anti-oxidants, Cell Tissue Biol., 2008, vol. 3, no. 1, pp. 56–60.

    Article  Google Scholar 

  • Wang, H.T., Gao, J.L., Tian, Y.X., and Kan, Q., Inhibition of N-acetyl-L-cysteine on expressions of matrix metalloproteinases increased by exposure to silicon dioxide in lung fibroblasts in rats, Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi, 2006, vol. 24, pp. 514–517.

    CAS  PubMed  Google Scholar 

  • Weiss, A., Goldman, S., Ben, Shlomo, I., Eyali, V., Leibovitz, S., and Shalev, E., Mechanisms of matrix metalloproteinase-9 and matrix metalloproteinase-2 inhibition by N-acetylcysteine in the human term decidua and fetal membranes, Am. J. Obstet. Gynecol., 2003, vol. 189, pp. 1758–1763.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Q., Kelly, A.P., Wang, L., French, S.W., Tang, X., Duong, H.S., Messadi, D.V., and Le, A.D., Green tea extract and (−)-epigallocatechin-3-gallate Inhibit mast cell-stimulated type i collagen expression in keloid fibroblasts via blocking PI-3K/AkT signaling pathways, J. Invest. Dermatol., 2006, vol. 126, pp. 2607–2613.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Gamaley.

Additional information

Original Russian Text © I.V. Voronkina, E.A. Vakhromova, K.M. Kirpichnikova, L.V. Smagina, I.A. Gamaley, 2014, published in Tsitologiya, 2014, Vol. 56, No. 10, pp. 717–724.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voronkina, I.V., Vakhromova, E.A., Kirpichnikova, K.M. et al. Matrix metalloproteinase activity in transformed cells exposed to an antioxidant. Cell Tiss. Biol. 9, 16–23 (2015). https://doi.org/10.1134/S1990519X15010113

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X15010113

Keywords

Navigation